Comparative Analysis of Machine Learning Models for Performance Prediction of the SPEC Benchmarks

被引:2
|
作者
Tousi, Ashkan [1 ]
Lujan, Mikel [1 ]
机构
[1] Univ Manchester, Dept Comp Sci, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Benchmark testing; Predictive models; Data models; Feature extraction; Software; Hardware; Analytical models; Machine learning; performance analysis; predictive models; SPEC CPU2017; supervised learning; REGRESSION; SELECTION;
D O I
10.1109/ACCESS.2022.3142240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simulation-based performance prediction is cumbersome and time-consuming. An alternative approach is to consider supervised learning as a means of predicting the performance scores of Standard Performance Evaluation Corporation (SPEC) benchmarks. SPEC CPU2017 contains a public dataset of results obtained by executing 43 standardised performance benchmarks organised into 4 suites on various system configurations. This paper analyses the dataset and aims to answer the following questions: I) can we accurately predict the SPEC results based on the configurations provided in the dataset, without having to actually run the benchmarks? II) what are the most important hardware and software features? III) what are the best predictive models and hyperparameters, in terms of prediction error and time? and IV) can we predict the performance of future systems using the past data? We present how to prepare data, select features, tune hyperparameters and evaluate regression models based on Multi-Task Elastic-Net, Decision Tree, Random Forest, and Multi-Layer Perceptron neural networks estimators. Feature selection is performed in three steps: removing zero variance features, removing highly correlated features, and Recursive Feature Elimination based on different feature importance metrics: elastic-net coefficients, tree-based importance measures and Permutation Importance. We select the best models using grid search on the hyperparameter space, and finally, compare and evaluate the performance of the models. We show that tree-based models with the original 29 features provide accurate predictions with an average error of less than 4%. The average error of faster Decision Tree and Random Forest models with 10 features is still below 6% and 5% respectively.
引用
收藏
页码:11994 / 12011
页数:18
相关论文
共 50 条
  • [1] Comparative analysis of machine learning models for rainfall prediction
    Das, Pritee Krishna
    Sahu, Rajiv Lochan
    Swain, Prakash Chandra
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2024, 264
  • [2] Performance Metrics for the Comparative Analysis of Clinical Risk Prediction Models Employing Machine Learning
    Huang, Chenxi
    Li, Shu-Xia
    Caraballo, Cesar
    Masoudi, Frederick A.
    Rumsfeld, John S.
    Spertus, John A.
    Normand, Sharon-Lise T.
    Mortazavi, Bobak J.
    Krumholz, Harlan M.
    CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2021, 14 (10): : 1076 - 1086
  • [3] Analysis of Machine Learning Models for Academic Performance Prediction
    Benitez Amaya, Andres
    Castro Barrera, Harold
    Manrique, Ruben
    GENERATIVE INTELLIGENCE AND INTELLIGENT TUTORING SYSTEMS, PT II, ITS 2024, 2024, 14799 : 150 - 161
  • [4] Comparative analysis of machine learning models for solar flare prediction
    Zheng, Yanfang
    Qin, Weishu
    Li, Xuebao
    Ling, Yi
    Huang, Xusheng
    Li, Xuefeng
    Yan, Pengchao
    Yan, Shuainan
    Lou, Hengrui
    ASTROPHYSICS AND SPACE SCIENCE, 2023, 368 (07)
  • [5] Comparative analysis of machine learning models for solar flare prediction
    Yanfang Zheng
    Weishu Qin
    Xuebao Li
    Yi Ling
    Xusheng Huang
    Xuefeng Li
    Pengchao Yan
    Shuainan Yan
    Hengrui Lou
    Astrophysics and Space Science, 2023, 368
  • [6] A Comparative Analysis of Machine Learning Models for the Prediction of Insurance Uptake in Kenya
    Yego, Nelson Kemboi
    Kasozi, Juma
    Nkurunziza, Joseph
    DATA, 2021, 6 (11)
  • [7] Comparative analysis of explainable machine learning prediction models for hospital mortality
    Eline Stenwig
    Giampiero Salvi
    Pierluigi Salvo Rossi
    Nils Kristian Skjærvold
    BMC Medical Research Methodology, 22
  • [8] A Comparative Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength
    Gayathri, Rajakumaran
    Rani, Shola Usha
    Cepova, Lenka
    Rajesh, Murugesan
    Kalita, Kanak
    PROCESSES, 2022, 10 (07)
  • [9] Comparative analysis of explainable machine learning prediction models for hospital mortality
    Stenwig, Eline
    Salvi, Giampiero
    Rossi, Pierluigi Salvo
    Skjaervold, Nils Kristian
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
  • [10] Comparative Analysis of Machine Learning Models for Crop's yield Prediction
    Babar, Zaheer Ud Din
    UlAmin, Riaz
    Sarwar, Muhammad Nabeel
    Jabeen, Sidra
    Abdullah, Muhammad
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 330 - 334