State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification

被引:23
|
作者
Zhao, Xiaobo [1 ,2 ]
Qian, Xiao [1 ]
Xuan, Dongji [2 ]
Jung, Seunghun [1 ]
机构
[1] Chonnam Natl Univ, Dept Mech Engn, Jeonju Si, South Korea
[2] Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou, Peoples R China
基金
新加坡国家研究基金会;
关键词
State of charge; lithium-ion battery; Extreme learning machine; Equivalent circuit model; Parameter identification; Electric vehicle; OF-CHARGE; OBSERVER;
D O I
10.1016/j.est.2022.105796
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The state of charge (SOC) is important for ensuring both battery safety and life. Furthermore, the SOC is required to estimate other battery states such as state of power (SOP) and state of health (SOH). Because the SOC is determined by estimation rather than observation, it is important to establish a proper estimation method. In this paper, an equivalent circuit model (ECM) was first constructed through online parameter extraction. Online parameter identification was based on a recursive least squares (RLS) method to input the various internal in-formation regarding the battery into the extreme learning machine to achieve accurate SOC estimation. Second, to deliver a highly accurate SOC estimation of lithium-ion batteries (LiBs), the multi-input extreme learning machine (MI-ELM) method based on an online model parameter identification technique was applied to the SOC estimation of LiBs. Finally, experiments were conducted under various operating conditions to assess the per-formance of the proposed method. Compared with other estimation methods such as the extended Kalman filter (EKF), the ordinary extreme learning machine (ELM), the adaptive square root extended Kalman filter (ASREKF), the autoencoder neural network with long short-term memory neural network (AUTOENCOD-LSTM), the arti-ficial neural network and unscented Kalman filter (NN&UKF), and the gravitational search algorithm-based ELM (ELM-GSA) in terms of the mean absolute error (MAE) and the root mean square error (RMSE), the proposed MI -ELM method achieved 60.00 %, 88.83 %, 52.50 %, 80.00 %, 84.55 %, and 79.64 % of the maximum performance improvement, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Research on online parameter identification and SOC estimation methods of lithium-ion battery model based on a robustness analysis
    Wang, Yongchao
    Meng, Dawei
    Chang, Yujia
    Zhou, Yongqin
    Li, Ran
    Zhang, Xiaoyu
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (15) : 21234 - 21253
  • [42] Online Parameter Identification of the Lithium-Ion Battery with Refined Instrumental Variable Estimation
    Wen, An
    Meng, Jinhao
    Peng, Jichang
    Cai, Lei
    Xiao, Qian
    COMPLEXITY, 2020, 2020
  • [43] Online Model Identification for State of Charge Estimation for Lithium-ion Batteries with Missing Data
    Jin, Hao
    Mao, Ling
    Qu, Keqing
    Zhao, Jinbin
    Li, Fen
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (12):
  • [44] Transfer Learning Techniques for the Lithium-Ion Battery State of Charge Estimation
    Eleftheriadis, Panagiotis
    Giazitzis, Spyridon
    Leva, Sonia
    Ogliari, Emanuele
    IEEE ACCESS, 2024, 12 : 993 - 1004
  • [45] Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data-Model Fusion Method
    Wei, Zhongbao
    Leng, Feng
    He, Zhongjie
    Zhang, Wenyu
    Li, Kaiyuan
    ENERGIES, 2018, 11 (07):
  • [46] An online model identification for state of charge estimation of lithium-ion batteries using extended kalman filter
    Zhao, Guangming
    Wang, Yifan
    2020 IEEE 3RD INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE), 2020, : 34 - 38
  • [47] Adaptive state of charge estimation of Lithium-ion battery based on battery capacity degradation model
    Yang, Guodong
    Li, Junqiu
    Fu, Zijian
    Guo, Lin
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 514 - 519
  • [48] State-Of-Charge Estimation for Lithium-Ion Battery Using Improved DUKF Based on State-Parameter Separation
    Yu, Chuan-Xiang
    Xie, Yan-Min
    Sang, Zhao-Yu
    Yang, Shi-Ya
    Huang, Rui
    ENERGIES, 2019, 12 (21)
  • [49] Online Estimation of Model Parameters and State of Charge for Lithium-Ion Battery Using Multitimescale Recurrent Neural Networks
    Zhang, Zepei
    Fan, Yuan
    Tian, Jiaqiang
    Kuang, Huyong
    Li, Mince
    Pan, Tianhong
    Wang, Yujie
    Liu, Xinghua
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025,
  • [50] State of charge estimation of lithium-ion batteries based on an improved parameter identification method
    Xia, Bizhong
    Chen, Chaoren
    Tian, Yong
    Wang, Mingwang
    Sun, Wei
    Xu, Zhihui
    ENERGY, 2015, 90 : 1426 - 1434