State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification

被引:23
|
作者
Zhao, Xiaobo [1 ,2 ]
Qian, Xiao [1 ]
Xuan, Dongji [2 ]
Jung, Seunghun [1 ]
机构
[1] Chonnam Natl Univ, Dept Mech Engn, Jeonju Si, South Korea
[2] Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou, Peoples R China
基金
新加坡国家研究基金会;
关键词
State of charge; lithium-ion battery; Extreme learning machine; Equivalent circuit model; Parameter identification; Electric vehicle; OF-CHARGE; OBSERVER;
D O I
10.1016/j.est.2022.105796
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The state of charge (SOC) is important for ensuring both battery safety and life. Furthermore, the SOC is required to estimate other battery states such as state of power (SOP) and state of health (SOH). Because the SOC is determined by estimation rather than observation, it is important to establish a proper estimation method. In this paper, an equivalent circuit model (ECM) was first constructed through online parameter extraction. Online parameter identification was based on a recursive least squares (RLS) method to input the various internal in-formation regarding the battery into the extreme learning machine to achieve accurate SOC estimation. Second, to deliver a highly accurate SOC estimation of lithium-ion batteries (LiBs), the multi-input extreme learning machine (MI-ELM) method based on an online model parameter identification technique was applied to the SOC estimation of LiBs. Finally, experiments were conducted under various operating conditions to assess the per-formance of the proposed method. Compared with other estimation methods such as the extended Kalman filter (EKF), the ordinary extreme learning machine (ELM), the adaptive square root extended Kalman filter (ASREKF), the autoencoder neural network with long short-term memory neural network (AUTOENCOD-LSTM), the arti-ficial neural network and unscented Kalman filter (NN&UKF), and the gravitational search algorithm-based ELM (ELM-GSA) in terms of the mean absolute error (MAE) and the root mean square error (RMSE), the proposed MI -ELM method achieved 60.00 %, 88.83 %, 52.50 %, 80.00 %, 84.55 %, and 79.64 % of the maximum performance improvement, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Iterative learning based model identification and state of charge estimation of lithium-ion battery
    Zhu, Qiao
    Chen, Jun-Xiong
    Xu, Meng-En
    Zou, Chen
    IET POWER ELECTRONICS, 2019, 12 (04) : 852 - 860
  • [2] Iterative Learning Based Model Identification and State of Charge Estimation of Lithium-Ion Battery
    Zhu, Qiao
    Xu, Meng'en
    Zheng, Meng'qian
    PROCEEDINGS OF 2018 IEEE 7TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS), 2018, : 222 - 228
  • [3] Lithium-Ion Battery Parameter Identification and State of Charge Estimation based on Equivalent Circuit Model
    Chang, Jiang
    Wei, Zhongbao
    He, Hongwen
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1490 - 1495
  • [4] Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm
    Lipu, Molla S. Hossain
    Hannan, Mahammad A.
    Hussain, Aini
    Saad, Mohamad H.
    Ayob, Afida
    Uddin, Mohammad Nasir
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (04) : 4225 - 4234
  • [5] Extreme learning machine model for state-of-charge estimation of lithium-ion battery using salp swarm algorithm
    Dou, Jiaming
    Ma, Hongyan
    Zhang, Yingda
    Wang, Shuai
    Ye, Yongxue
    Li, Shengyan
    Hu, Lujin
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [6] Extreme learning machine model with honey badger algorithm based state-of-charge estimation of lithium-ion battery
    Anandhakumar, C.
    Murugan, N. S. Sakthivel
    Kumaresan, K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [7] Online estimation of the state of charge of a lithium-ion battery based on the fusion model
    Wang X.-L.
    Jin H.-Q.
    Liu X.-Y.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (09): : 1200 - 1208
  • [8] Joint State-of-Charge and State-of-Available-Power Estimation Based on the Online Parameter Identification of Lithium-Ion Battery Model
    Zhang, Wenjie
    Wang, Liye
    Wang, Lifang
    Liao, Chenglin
    Zhang, Yuwang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (04) : 3677 - 3688
  • [9] Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer
    Wei, Zhongbao
    Meng, Shujuan
    Xiong, Binyu
    Ji, Dongxu
    Tseng, King Jet
    APPLIED ENERGY, 2016, 181 : 332 - 341
  • [10] An improved state of charge estimation of lithium-ion battery based on a dual input model
    Xiong, Yonglian
    Zhu, Yucheng
    Xing, Houchao
    Lin, Shengqiang
    Xiao, Jie
    Zhang, Chi
    Yi, Ting
    Fan, Yongsheng
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) : 575 - 588