Thermo-Mechanical Behavior of Novel EPDM Foams Containing a Phase Change Material for Thermal Energy Storage Applications

被引:8
|
作者
Bianchi, Marica [1 ]
Valentini, Francesco [1 ]
Fredi, Giulia [1 ]
Dorigato, Andrea [1 ]
Pegoretti, Alessandro [1 ]
机构
[1] Univ Trento, Dept Ind Engn, INSTM Res Unit, Via Sommar 9, I-38123 Trento, Italy
关键词
EPDM; rubber; foams; thermal energy storage; PCM; paraffin; PARAFFIN; CONDUCTIVITY; TEMPERATURE; MORPHOLOGY; FIBER;
D O I
10.3390/polym14194058
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this paper Ethylene Propylene Diene Monomer rubber (EPDM) foams were filled with different amounts of paraffin, a common phase change material (PCM) having a melting temperature at about 70 degrees C, to develop novel rubber foams with thermal energy storage (TES) capabilities. Samples were prepared by melt compounding and hot pressing, and the effects of three foaming methods were investigated. In particular, two series of samples were produced through conventional foaming techniques, involving physical (Micropearl (R) F82, MP, Lehvoss Italia s.r.l. Saronno, Italia) and chemical (Hostatron (R) P0168, H, Clariant GmbH, Ahrensburg, Germany) blowing agents, while the salt leaching method was adopted to produce another series of foams. Scanning electron microscopy (SEM) and density measurements showed that MP led to the formation of a closed-cell porosity, while a mixed closed-cell/open-cell morphology was detected for the H foamed samples. On the other hand, foams produced through salt leaching were mainly characterized by an open-cell porosity. The qualitative analysis of paraffin leakage revealed that at 90 degrees C only the foams produced through salt leaching suffered from significant PCM leakage. Consequently, the thermo-mechanical properties were investigated only in samples produced with H and MP. Differential Scanning Calorimetry (DSC) analysis revealed that EPDM/paraffin foams were endowed by good TES properties, especially at higher PCM contents (up to 145 J/g with a paraffin amount of 60 wt%). Tensile and compressive tests demonstrated the addition of the PCM increased the stiffness at 25 degrees C, while the opposite effect was observed above the melting temperature of paraffin. These results suggest that the EPDM foams produced with H and MP show an interesting potential for thermal management of electronic devices.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations
    Murphy, Kyle D.
    McCartney, John S.
    Henry, Karen S.
    ACTA GEOTECHNICA, 2015, 10 (02) : 179 - 195
  • [42] Phase change material thermal energy storage systems for cooling applications in buildings: A review
    Faraj, Khaireldin
    Khaled, Mahmoud
    Faraj, Jalal
    Hachem, Farouk
    Castelain, Cathy
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 119
  • [43] Phase change material based thermal energy storage applications for air conditioning: Review
    Muzhanje, Allan Takudzwa
    Hassan, M. A.
    Hassan, Hamdy
    APPLIED THERMAL ENGINEERING, 2022, 214
  • [44] Phase change material nanocomposites for thermal energy storage applications on solar water heater
    Abd, Hussain Saad
    Jaddoa, Ameer A.
    Judran, Hadia K.
    Alkhasraji, Jafaar M. D.
    Aqool, Safa J.
    Chaichan, Miqdam T.
    RESULTS IN ENGINEERING, 2025, 25
  • [45] Microencapsulation of Biobased Phase Change Material by Interfacial Polycondensation for Thermal Energy Storage Applications
    Liu, Cai-Hong
    Yu, Xun
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2013, 7 (03) : 331 - 335
  • [46] Phase Change Material Melting Process in a Thermal Energy Storage System for Applications in Buildings
    Nascimento Porto, Tulio
    Delgado, Joao M. P. Q.
    Guimaraes, Ana Sofia
    Fernandes Magalhaes, Hortencia Luma
    Moreira, Gicelia
    Brito Correia, Balbina
    Freire de Andrade, Tony
    Barbosa de Lima, Antonio Gilson
    ENERGIES, 2020, 13 (12)
  • [47] Thermal properties of beeswax/graphene phase change material as energy storage for building applications
    Amin, Muhammad
    Putra, Nandy
    Kosasih, Engkos A.
    Prawiro, Erwin
    Luanto, Rizky Achmad
    Mahlia, T. M. I.
    APPLIED THERMAL ENGINEERING, 2017, 112 : 273 - 280
  • [48] Thermo-mechanical analysis of ceramic encapsulated phase-change-material (PCM) particles
    Pitie, F.
    Zhao, C. Y.
    Caceres, G.
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (06) : 2117 - 2124
  • [49] Modeling the thermal behavior of multifunctional syntactic foams containing phase change materials for heat management applications
    Fredi, Giulia
    Ronconi, Giulia
    Galvagnini, Francesco
    Mazzanti, Valentina
    Zanelli, Marco
    Mollica, Francesco
    Dorigato, Andrea
    POLYMER COMPOSITES, 2024, 45 (17) : 15590 - 15603
  • [50] Experimental characterisation of a novel thermal energy storage based on open-cell copper foams immersed in organic phase change material
    Cozzolino, Raffaello
    Chiappini, Daniele
    Bella, Gino
    ENERGY CONVERSION AND MANAGEMENT, 2019, 200