The forced non-linear Schrodinger equation with a potential on the half-line

被引:17
|
作者
Weder, R [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Mexico City 01000, DF, Mexico
关键词
forced equation; potential;
D O I
10.1002/mma.637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove that the initial-boundary value problem for the forced non-linear Schrodinger equation with a potential on the half-line is locally and (under stronger conditions) globally well posed, i.e. that there is a unique solution that depends continuously on the force at the boundary and on the initial data. We allow for a large class of unbounded potentials. Actually, for local solutions we have no restriction on the growth at infinity of the positive part of the potential, and for global solutions very mild assumptions that allow, for example, for exponential growth. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:1237 / 1255
页数:19
相关论文
共 50 条
  • [41] The interior-boundary Strichartz estimate for the Schrodinger equation on the half-line revisited
    Koksal, Bilge
    Ozsari, Turker
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3323 - 3351
  • [42] NON-LINEAR SCHRODINGER EQUATION WITH NON LOCAL INTERACTION
    GINIBRE, J
    VELO, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (14): : 683 - 685
  • [43] The non-linear Schrodinger equation with a periodic δ-interaction
    Pava, Jaime Angulo
    Ponce, Gustavo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 497 - 551
  • [44] On the variational principle for the non-linear Schrodinger equation
    Mihalka, Zsuzsanna E.
    Margocsy, Adam
    Szabados, Agnes
    Surjan, Peter R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (01) : 340 - 351
  • [45] The energy graph of the non-linear Schrodinger equation
    Procesi, M.
    Procesi, C.
    Nguyen, B. Van
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 229 - 301
  • [46] Schrodinger Wave Operators on the Discrete Half-Line
    Inoue, Hideki
    Tsuzu, Naohiro
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2019, 91 (05)
  • [47] Instability for the semiclassical non-linear Schrodinger equation
    Burq, N
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 45 - 58
  • [48] A characterization of singular Schrodinger operators on the half-line
    Scandone, Raffaele
    Luperi Baglini, Lorenzo
    Simonov, Kyrylo
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 923 - 941
  • [49] Half-line Schrodinger operators with no bound states
    Damanik, D
    Killip, R
    ACTA MATHEMATICA, 2004, 193 (01) : 31 - 72
  • [50] Trace formulas for Schrodinger operators on the half-line
    Demirel, Semra
    Usman, Muhammad
    BULLETIN OF MATHEMATICAL SCIENCES, 2011, 1 (02) : 397 - 427