Optical solitons to the (1+2)-dimensional Chiral non-linear Schrodinger equation

被引:15
|
作者
Ozisik, Muslum [2 ]
Bayram, Mustafa [1 ]
Secer, Aydin [1 ,2 ]
Cinar, Melih [2 ,3 ]
Yusuf, Abdullahi [1 ]
Sulaiman, Tukur Abdulkadir [1 ]
机构
[1] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[2] Yildiz Tech Univ, Dept Math Engn, Istanbul, Turkey
[3] Yildiz Tech Univ, Grad Sch Sci & Engn, Istanbul, Turkey
关键词
Chiral nonlinear Schrodinger equation; Soliton solutions; Enhanced modified extended tanh expansion method; COMPLEX WAVE SOLUTIONS; BRIGHT; DARK;
D O I
10.1007/s11082-022-03938-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we have successfully extracted many analytic solutions for the (1+2)-dimensional Chiral non-linear Schrodinger equation (NLSE) by the enhanced modified extended tanh expansion method (eMETEM). The considered method is a recently enhanced version of the classical modified extended tanh expansion method. So, we have successfully extracted the abundant solutions of the (1+2)-dimensional Chiral NLSE. Using a computer algebra system program, we have verified that all derived solutions satisfy the Chiral NLSE. The plots of some solutions are demonstrated to explain the dynamics of the solutions. It is expected that the results of the paper might be helpful for future works in traveling wave theory.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] 3 DIMENSIONAL STABILITY OF SOLUTIONS OF THE NON-LINEAR SCHRODINGER-EQUATION
    INFELD, E
    ROWLANDS, G
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1980, 37 (03): : 277 - 280
  • [32] SCATTERING OF QUANTIZED SOLITONS IN NON-LINEAR SCHRODINGER THEORY
    SCHLINDWEIN, M
    ACTA PHYSICA AUSTRIACA, 1977, : 429 - 444
  • [33] Duality between Dirac fermions in curved spacetime and optical solitons in non-linear Schrodinger model: magic of 1+1-dimensional bosonization
    Ghosh, Subir
    EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (12):
  • [34] Optical solitons and periodic solutions of the (2+1)-dimensional nonlinear Schrodinger's equation
    Feng, Dahe
    Jiao, Jianjun
    Jiang, Guirong
    PHYSICS LETTERS A, 2018, 382 (32) : 2081 - 2084
  • [36] NON-LINEAR SCHRODINGER EQUATION WITH NON LOCAL INTERACTION
    GINIBRE, J
    VELO, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (14): : 683 - 685
  • [37] The non-linear Schrodinger equation with a periodic δ-interaction
    Pava, Jaime Angulo
    Ponce, Gustavo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (03): : 497 - 551
  • [38] On the variational principle for the non-linear Schrodinger equation
    Mihalka, Zsuzsanna E.
    Margocsy, Adam
    Szabados, Agnes
    Surjan, Peter R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (01) : 340 - 351
  • [39] The energy graph of the non-linear Schrodinger equation
    Procesi, M.
    Procesi, C.
    Nguyen, B. Van
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 229 - 301
  • [40] Instability for the semiclassical non-linear Schrodinger equation
    Burq, N
    Zworski, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) : 45 - 58