Oxygen-Tolerant RAFT Polymerization Initiated by Living Bacteria

被引:1
|
作者
Bennett, Mechelle R. [1 ]
Moloney, Cara [2 ]
Catrambone, Francesco [3 ]
Turco, Federico [4 ]
Myers, Benjamin [1 ]
Kovacs, Katalin [5 ]
Hill, Philip J. [6 ]
Alexander, Cameron [5 ]
Rawson, Frankie J. [1 ]
Gurnani, Pratik [5 ]
机构
[1] Univ Nottingham, Sch Pharm, Div Regenerat Med & Cellular Therapies, Nottingham NG7 2RD, England
[2] Univ Nottingham, BioDiscovery Inst, Sch Med, Nottingham NG7 2RD, England
[3] Univ Nottingham, BioDiscovery Inst, Sch Life Sci, Nottingham NG72RD, England
[4] Univ Nottingham, BioDiscovery Inst, Sch Pharm, Nottingham NG72RD, England
[5] Univ Nottingham, Sch Pharm, Div Mol Therapeut, Nottingham NG7 2RD, England
[6] Univ Nottingham, Sch Biosci Brewing & Biotechnol, Div Microbiol, Nottingham LE12 5RD, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
COPOLYMER NANO-OBJECTS; PET-RAFT; MULTIBLOCK COPOLYMERS; POLYMERS;
D O I
10.1021/acsmacrolett.2c00372954
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Living organisms can synthesize a wide range of macromolecules from a small set of natural building blocks, yet there is potential for even greater materials diversity by exploiting biochemical processes to convert unnatural feedstocks into new abiotic polymers. Ultimately, the synthesis of these polymers in situ might aid the coupling of organisms with synthetic matrices, and the generation of biohybrids or engineered living materials. The key step in biohybrid materials preparation is to harness the relevant biological pathways to produce synthetic polymers with predictable molar masses and defined architectures under ambient conditions. Accordingly, we report an aqueous, oxygen-tolerant RAFT polymerization platform based on a modified Fenton reaction, which is initiated by Cupriavidus metallidurans CH34, a bacterial species with iron-reducing capabilities. We show the synthesis of a range of water-soluble polymers under normoxic conditions, with control over the molar mass distribution, and also the production of block copolymer nanoparticles via polymerization-induced self-assembly. Finally, we highlight the benefits of using a bacterial initiation system by recycling the cells for multiple polymerizations. Overall, our method represents a highly versatile approach to producing well-defined polymeric materials within a hybrid natural-synthetic polymerization platform and in engineered living materials with properties beyond those of biotic macromolecules.
引用
收藏
页码:954 / 960
页数:7
相关论文
共 50 条
  • [31] Oxygen-tolerant biohydrogen production in recombinant Escherichia coli
    Kim, J. Y. H.
    Jo, B. H.
    Jo, Y.
    Cha, H. J.
    JOURNAL OF BIOTECHNOLOGY, 2010, 150 : S151 - S151
  • [32] Physiological responses of oxygen-tolerant anaerobic Bifidobacterium longum under oxygen
    Ahn, JB
    Hwang, HJ
    Park, JH
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2001, 11 (03) : 443 - 451
  • [33] Sonochemically Initiated RAFT Polymerization in Organic Solvents
    Collins, Joe
    McKenzie, Thomas G.
    Nothling, Mitchell D.
    Allison-Logan, Stephanie
    Ashokkumar, Muthupandian
    Qiao, Greg G.
    MACROMOLECULES, 2019, 52 (01) : 185 - 195
  • [34] Oxygen-tolerant hydrogenases in hydrogen-based technologies
    Friedrich, Baerbel
    Fritsch, Johannes
    Lenz, Oliver
    CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 (03) : 358 - 364
  • [35] Reversible oxygen-tolerant hydrogenase carried by free-living N2-fixing bacteria isolated from the rhizospheres of rice, maize, and wheat
    Roumagnac, Philippe
    Richaud, Pierre
    Barakat, Mohamed
    Ortet, Philippe
    Roncato, Marie-Anne
    Heulin, Thierry
    Peltier, Gilles
    Achouak, Wafa
    Cournac, Laurent
    MICROBIOLOGYOPEN, 2012, 1 (04): : 349 - 361
  • [36] Trithiocarbonates as intrinsic photoredox catalysts and RAFT agents for oxygen tolerant controlled radical polymerization
    Fu, Q.
    Xie, K.
    McKenzie, T. G.
    Qiao, G. G.
    POLYMER CHEMISTRY, 2017, 8 (09) : 1519 - 1526
  • [37] Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase
    Lupacchini, Sara
    Appel, Jens
    Stauder, Ron
    Bolay, Paul
    Klaehn, Stephan
    Lettau, Elisabeth
    Adrian, Lorenz
    Lauterbach, Lars
    Buehler, Bruno
    Schmid, Andreas
    Toepel, Joerg
    METABOLIC ENGINEERING, 2021, 68 : 199 - 209
  • [38] Photo-RDRP for everyone: Smartphone light-induced oxygen-tolerant reversible deactivation radical polymerization
    Jazani, Arman Moini
    Rawls, Caroline
    Matyjaszewski, Krzysztof
    EUROPEAN POLYMER JOURNAL, 2024, 202
  • [39] Rapid Oxygen-Tolerant Synthesis of Protein-Polymer Bioconjugates via Aqueous Copper-Mediated Polymerization
    Theodorou, Alexis
    Gounaris, Dimitris
    Voutyritsa, Errika
    Andrikopoulos, Nicholas
    Baltzaki, Chrissie Isabella Maria
    Anastasaki, Athina
    Velonia, Kelly
    BIOMACROMOLECULES, 2022, 23 (10) : 4241 - 4253
  • [40] Mechanism of oxygen detoxification by the surprisingly oxygen-tolerant hyperthermophilic archaeon, Pyrococcus furiosus
    Thorgersen, Michael P.
    Stirrett, Karen
    Scott, Robert A.
    Adams, Michael W. W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) : 18547 - 18552