Cyclic codes over M4(F2 + uF2) (Mar, 10.1007/s12095-022-00572-9, 2022)

被引:0
|
作者
Patel, Shikha [1 ]
Prakash, Om [1 ]
Islam, Habibul [1 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Patna 801106, Bihar, India
关键词
Cyclic codes; Gray map; Matrix ring; Modules;
D O I
10.1007/s12095-022-00584-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let p be a prime and Fq be a finite field for q= pm. In this paper, we consider the ring R= M4(F2+ uF2) of 4 × 4 matrices over the finite ring F2+ uF2 with u2= 0. Then R is a noncommutative non-chain ring of cardinality 4 16 and isomorphic to the ring F16+ vF16+ v2F16+ v3F16+ uF16+ uvF16+ uv2F16+ uv3F16, where v4= 0 , uv= vu, uv2= v2u and uv3= v3u. Here, first we establish the structure of cyclic codes and their generators over R and later the dual (Euclidean and Hermitian both) of these cyclic codes are discussed. Further, with the help of the Gray map, we show that the image of a cyclic code is an F16-linear code. Finally, we provide some non-trivial examples of linear codes with good parameters to support our derived results. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:1035 / 1037
页数:3
相关论文
共 50 条
  • [41] Extremal Binary Self-Dual Codes of Lengths 64 and 66 from Four-Circulant Constructions over F2 + uF2
    Karadeniz, Suat
    Yildiz, Bahattin
    Aydin, Nuh
    FILOMAT, 2014, 28 (05) : 937 - 945
  • [42] Construction of extremal self-dual codes over F2 + uF2 with an automorphism of odd order (vol 18, pg 971, 2012)
    Kim, Hyun Jin
    Lee, Yoonjin
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 23 : 103 - 104
  • [43] Cyclic codes over F2[u]/(u4-1) and applications to DNA codes
    Yildiz, Bahattin
    Siap, Irfan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 63 (07) : 1169 - 1176
  • [44] Self-dual codes over F2x(F2+F2) (Oct, 10.1007/s12095-020-00461-z, 2020)
    Aksoy, Refia
    Caliskan, Fatma
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (02): : 361 - 362
  • [45] Lee distance of cyclic and (1+uγ)-constacyclic codes of length 2s over F2m + uF2m
    Hai Q Dinh
    Kewat, Pramod Kumar
    Mondal, Nilay Kumar
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [46] An explicit expression for Euclidean self-dual cyclic codes over F2m + uF2m of length 2s
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Wang, Guidong
    Sirisrisakulchai, Jirakom
    DISCRETE MATHEMATICS, 2021, 344 (05)
  • [47] An explicit representation and enumeration for self-dual cyclic codes over F2m + uF2m of length 2s
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Jitman, Somphong
    DISCRETE MATHEMATICS, 2019, 342 (07) : 2077 - 2091
  • [48] Construction and enumeration for self-dual cyclic codes of even length over F2m + uF2m
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Fu, Fang-Wei
    Ma, Fanghui
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 61
  • [49] On the structure of cyclic codes over M2(Fp + uFp) (Jun, 10.1007/s13226-021-00014-x, 2021)
    Islam, Habibul
    Prakash, Om
    Bhunia, Dipak Kumar
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 1128 - 1128
  • [50] Cyclic codes over M4(F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2$$\end{document})
    Joydeb Pal
    Sanjit Bhowmick
    Satya Bagchi
    Journal of Applied Mathematics and Computing, 2019, 60 : 749 - 756