Supersingular elliptic curves over (F)over-bar5

被引:0
|
作者
Belhamra, Nabila [1 ]
机构
[1] USTHB, Algebra, Algiers 16111, Algeria
来源
关键词
Supersingular elliptic curve; Torsion group; j-invariant;
D O I
10.1007/s13226-021-00204-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we propose an explicit proof that there is a unique supersingular elliptic curve up to isomorphism over (F) over bar (5), and its j-invariant is equal to zero.
引用
下载
收藏
页码:989 / 992
页数:4
相关论文
共 50 条
  • [31] Supersingular hyperelliptic curves of genus 2 over finite fields
    Choie, YJ
    Jeong, EK
    Lee, EJ
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) : 565 - 576
  • [32] Supersingular curves over finite fields and weight divisibility of codes
    Guneri, Cem
    McGuire, Gary
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 474 - 484
  • [33] Isogenous of the elliptic curves over the rationals
    Nitaj, A
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2002, 20 (04) : 337 - 348
  • [34] Elliptic curves over Q∞ are modular
    Thorne, Jack A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (07) : 1943 - 1948
  • [35] Quaternion algebras over elliptic curves
    Pumplün, S
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (12) : 4357 - 4373
  • [36] ISOGENOUS OF THE ELLIPTIC CURVES OVER THE RATIONALS
    Abderrahmane Nitaj (Mathematik
    Journal of Computational Mathematics, 2002, (04) : 337 - 348
  • [37] Elliptic Curves over a Finite Ring
    Cheddour, Zakariae
    Chillali, Abdelhakim
    Mouhib, Ali
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2023, 50 (02): : 313 - 324
  • [38] COMPUTING ELLIPTIC CURVES OVER Q
    Bennett, Michael A.
    Gherga, Adela
    Rechnitzer, Andrew
    MATHEMATICS OF COMPUTATION, 2019, 88 (317) : 1341 - 1390
  • [39] Elliptic Curves Over the Ring R*
    Boulbot, A.
    Chillali, A.
    Mouhib, A.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (03): : 193 - 201
  • [40] RANK PARITY FOR CONGRUENT SUPERSINGULAR ELLIPTIC CURVES
    Hatley, Jeffrey
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (09) : 3775 - 3786