Applications of artificial intelligence for DWI and PWI data processing in acute ischemic stroke: Current practices and future directions

被引:15
|
作者
Ben Alaya, Ines [1 ]
Limam, Hela [2 ]
Kraiem, Tarek [1 ]
机构
[1] Tunis El Manar Univ, Higher Inst Med Technol Tunis, Lab Biophys & Med Technol, Tunis 1006, Tunisia
[2] Univ Tunis El Manar, Inst Super dInformat, Inst Super Gest Tunis, Lab BestMod, Tunis 1002, Tunisia
关键词
Stroke; Diffusion MRI; Artificial intelligence; Magnetic resonance imaging; Ischemic penumbra; Perfusion imaging; ARTERIAL INPUT FUNCTION; CEREBRAL-BLOOD-FLOW; DIFFUSION-COEFFICIENT THRESHOLD; PERFUSION IMAGING EVALUATION; EVALUATION TRIAL EPITHET; LESION SEGMENTATION; AUTOMATIC SELECTION; PENUMBRAL FLOW; WEIGHTED MRI; QUANTIFICATION;
D O I
10.1016/j.clinimag.2021.09.015
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Multimodal Magnetic Resonance Imaging (MRI) techniques of Perfusion-Weighted Imaging (PWI) and DiffusionWeighted Imaging (DWI) data are integral parts of the diagnostic workup in the acute stroke setting. The visual interpretation of PWI/DWI data is the most likely procedure to triage Acute Ischemic Stroke (AIS) patients who will access reperfusion therapy, especially in those exceeding 6 h of stroke onset. In fact, this process defines two classes of tissue: the ischemic core, which is presumed to be irreversibly damaged, visualized on DWI data and the penumbra which is the reversibly injured brain tissue around the ischemic tissue, visualized on PWI data. AIS patients with a large ischemic penumbra and limited infarction core have a high probability of benefiting from endovascular treatment. However, it is a tedious and time-consuming procedure. Consequently, it is subject to high inter- and intraobserver variability. Thus, the assessment of the potential risks and benefits of endovascular treatment is uncertain. Fast, accurate and automatic post-processing of PWI and DWI data is important for clinical diagnosis and is necessary to help the decision making for therapy. Therefore, an automated procedure that identifies stroke slices, stroke hemisphere, segments stroke regions in DWI, and measures hypoperfused tissue in PWI enhances considerably the reproducibility and the accuracy of stroke assessment. In this work, we draw an overview of several applications of Artificial Intelligence (AI) for the automation processing and their potential contributions in clinical practices. We compare the current approaches among each other's with respect to some key requirements.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 50 条
  • [31] Artificial intelligence in endoscopy: Overview, applications, and future directions
    Arif, Arif A.
    Jiang, Shirley X.
    Byrne, Michael F.
    SAUDI JOURNAL OF GASTROENTEROLOGY, 2023, 29 (05): : 269 - 277
  • [32] Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions
    Toro-Tobon, David
    Loor-Torres, Ricardo
    Duran, Mayra
    Fan, Jungwei W.
    Ospina, Naykky Singh
    Wu, Yonghui
    Brito, Juan P.
    THYROID, 2023, 33 (08) : 903 - 917
  • [33] Revolutionizing Spinal Care: Current Applications and Future Directions of Artificial Intelligence and Machine Learning
    Yagi, Mitsuru
    Yamanouchi, Kento
    Fujita, Naruhito
    Funao, Haruki
    Ebata, Shigeto
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (13)
  • [34] Artificial Intelligence for Efficient Thermal Comfort Systems: Requirements, Current Applications and Future Directions
    Ghahramani, Ali
    Galicia, Parson
    Lehrer, David
    Varghese, Zubin
    Wang, Zhe
    Pandit, Yogesh
    FRONTIERS IN BUILT ENVIRONMENT, 2020, 6
  • [35] Future directions for recanalization therapy in acute ischemic stroke
    Willey, Joshua
    Schumacher, H. Christian
    Meyers, Philip M.
    FUTURE NEUROLOGY, 2006, 1 (01) : 107 - 116
  • [36] Analyses of thrombi in acute ischemic stroke: A consensus statement on current knowledge and future directions
    De Meyer, Simon F.
    Andersson, Tommy
    Baxter, Blaise
    Bendszus, Martin
    Brouwer, Patrick
    Brinjikji, Waleed
    Campbell, Bruce C. V.
    Costalat, Vincent
    Davalos, Antoni
    Demchuk, Andrew
    Dippel, Diederik
    Fiehler, Jens
    Fischer, Urs
    Gilvarry, Michael
    Gounis, Matthew J.
    Gralla, Jan
    Jansen, Olav
    Jovin, Tudor
    Kallmes, David
    Khatri, Pooja
    Lees, Kennedy R.
    Lopez-Cancio, Elena
    Majoie, Charles
    Marquering, Henk
    Narata, Ana Paula
    Nogueira, Raul
    Ringleb, Peter
    Siddiqui, Adnan
    Szikora, Istvan
    Vale, David
    von Kummer, Ruediger
    Yoo, Albert J.
    Hacke, Werner
    Liebeskind, David S.
    INTERNATIONAL JOURNAL OF STROKE, 2017, 12 (06) : 606 - 614
  • [37] Optimal definition for PWI/DWI mismatch in acute ischemic stroke patients (vol 28, pg 887, 2008)
    Kakuda, Wataru
    Lansberg, Maarten G.
    Thijs, Vincent N.
    Kemp, Stephanie M.
    Bammer, Roland
    Wechsler, Lawrence R.
    Moseley, Michael E.
    Marks, Michael P.
    Albers, Gregory W.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2008, 28 (06): : 1272 - 1272
  • [38] Higher rCBV Values In The PWI/DWI Mismatch Area Predict Favorable Clinical Outcome In Acute Ischemic Stroke
    Lee, Jun
    Lansberg, Maarten G.
    Mlynash, Michael
    Straka, Matus
    Bammer, Roland
    Olivot, Jean-Marc
    Kemp, Stephanie
    Albers, Gregory W.
    STROKE, 2011, 42 (03) : E112 - E112
  • [39] Artificial intelligence in stroke imaging: Current and future perspectives
    Yedavalli, Vivek S.
    Tong, Elizabeth
    Martin, Dann
    Yeom, Kristen W.
    Forkert, Nils D.
    CLINICAL IMAGING, 2021, 69 : 246 - 254
  • [40] Current status and future directions in artificial intelligence for nuclear cardiology
    Miller, Robert J. H.
    Slomka, Piotr J.
    EXPERT REVIEW OF CARDIOVASCULAR THERAPY, 2024, 22 (08) : 367 - 378