V-MOF@graphene derived two-dimensional hierarchical V2O5 @graphene as high-performance cathode for aqueous zinc-ion batteries

被引:38
|
作者
Gong, L. [1 ,2 ]
Zhang, Y. [1 ,2 ]
Li, Z. [1 ,2 ]
机构
[1] Cent South Univ, Key Lab Nonferrous Met Mat Sci & Engn, Minist Educ, Changsha 410083, Peoples R China
[2] Cent South Univ, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
关键词
Aqueous ZIBs; Vanadium-MOF; Vanadium pentoxide@graphene; High capacity; Two-dimensional composite structure; LONG-CYCLE-LIFE; SINGLE-CRYSTAL; HIGH-CAPACITY; ELECTRODE; LITHIUM; STORAGE;
D O I
10.1016/j.mtchem.2021.100731
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable aqueous zinc-ion batteries (ZIBs) are attracting growing attention in the field of grid-scale energy storage systems due to their reliable safety and low cost. However, it is still hindered by the limited choices of suitable cathode materials with high performance for aqueous ZIBs. Herein, we developed a V-MOF@graphene derived two-dimensional hierarchical V2O5@graphene for the first time, where the porous V2O5 nanosheets are homogeneously attached to the 2D graphene substrate. Benefiting from the unique 2D composite structure with excellent electronic and ionic conductivity, adequate active sites, as well as the synergistic effect between the ultrathin V2O5 nanosheets and graphene, the V2O5@graphene here exhibits outstanding electrochemical performance in aqueous ZIBs. Particularly, it delivered an ultrahigh reversible capacity of 378 mAh/g at a current density of 2 A/g. What is more, a high specific capacity of 305 mAh/g after 100 cycles at 0.1 A/g and 200 mAh/g after 1,000 cycles at 1 A/g can be achieved. These ideal results suggest that the V2O5@graphene cathode hold great promise for high-performance aqueous zinc-ion batteries. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability
    Yang, Yongqiang
    Tang, Yan
    Liang, Shuquan
    Wu, Zhuoxi
    Fang, Guozhao
    Cao, Xinxin
    Wang, Chao
    Lin, Tianquan
    Pan, Anqiang
    Zhou, Jiang
    NANO ENERGY, 2019, 61 : 617 - 625
  • [42] Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode
    Qi, Zichen
    Xiong, Ting
    Chen, Tao
    Shi, Wen
    Zhang, Mingchang
    Ang, Zhi Wei Javier
    Fan, Huiqing
    Xiao, Hong
    Lee, Wee Siang Vincent
    Xue, Junmin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 870
  • [43] V3O7•H2O@CNTs as cathode for high-performance aqueous zinc-ion batteries
    Ba, Ying
    Wang, Haoshen
    Zhang, Pengchao
    Wen, Zhongsheng
    Li, Song
    Sun, Juncai
    MATERIALS LETTERS, 2024, 355
  • [44] A novel organic-inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries
    Du, Yehong
    Wang, Xinyu
    Man, Jianzong
    Sun, Juncai
    MATERIALS LETTERS, 2020, 272 (272)
  • [45] Carbon Quantum Dots Promote Coupled Valence Engineering of V2O5 Nanobelts for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Jingrui
    Wei, Shuxian
    Wang, Haowei
    Liu, Huanhuan
    Zhang, Yi
    Liu, Siyuan
    Wang, Zhaojie
    Lu, Xiaoqing
    CHEMSUSCHEM, 2021, 14 (09) : 2076 - 2083
  • [46] Constructing graphene conductive networks in manganese vanadate as high-performance cathode for aqueous zinc-ion batteries
    Liu, Hongwei
    Wang, Nengze
    Hu, Lei
    Sun, Mengxuan
    Li, Zhijie
    Jia, Chunyang
    ELECTROCHIMICA ACTA, 2023, 441
  • [47] Layered Ni0.22V2O5•nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Wei, Min
    Luo, Wen
    Yu, Danrui
    Liang, Xiao
    Wei, Wei
    Gao, Mingrui
    Sun, Shuokun
    Zhu, Quanyao
    Liu, Guoquan
    IONICS, 2021, 27 (11) : 4801 - 4809
  • [48] Layered Ni0.22V2O5·nH2O as high-performance cathode material for aqueous zinc-ion batteries
    Min Wei
    Wen Luo
    Danrui Yu
    Xiao Liang
    Wei Wei
    Mingrui Gao
    Shuokun Sun
    Quanyao Zhu
    Guoquan Liu
    Ionics, 2021, 27 : 4801 - 4809
  • [49] Reversible K0.54V2O5 Nanorods for High-Performance Aqueous Zinc-Ion Batteries
    Wu, Pengbo
    Xu, Tianxing
    Chen, Yaopeng
    Yang, Qiaoling
    Wang, Jue
    Liu, You-Nian
    Li, Yajuan
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02) : 1656 - 1661
  • [50] Zn-doped V2O5 film electrodes as cathode materials for high-performance thin-film zinc-ion batteries
    Zhang, Yigao
    Xu, Haiyan
    He, Yang
    Bian, Hanxiao
    Jiang, Renhua
    Zhao, Qiang
    Li, Dongcai
    Wang, Aiguo
    Sun, Daosheng
    SOLID STATE IONICS, 2024, 416