Review: High-Entropy Materials for Lithium-Ion Battery Electrodes

被引:34
|
作者
Sturman, James W. [1 ,2 ]
Baranova, Elena A. [2 ]
Abu-Lebdeh, Yaser [1 ]
机构
[1] Natl Res Council Canada, Energy Min & Environm Res Ctr, Ottawa, ON, Canada
[2] Univ Ottawa, Ctr Catalysis Res & Innovat CCRI, Dept Chem & Biol Engn, Ottawa, ON, Canada
关键词
energy storage; lithium-ion battery; high-entropy; alloys; ceramic oxides; electrode materials; ANODE MATERIAL; RARE-EARTH; OXIDES; STORAGE; ALLOYS; MG; MECHANISMS; CONVERSION; CATHODES;
D O I
10.3389/fenrg.2022.862551
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The lithium-ion battery is a type of rechargeable power source with applications in portable electronics and electric vehicles. There is a thrust in the industry to increase the capacity of electrode materials and hence the energy density of the battery. The high-entropy (HE) concept is one strategy that may allow for the compositional variability needed to design new materials for next-generation batteries. Inspired by HE-alloys, HE-oxides are an emerging class of multicomponent ceramics with promising electrochemical properties. This review will focus on the application of these materials to the development of new battery electrodes with insight into the materials' structure/property relationship and battery performance. We highlight recent results on HE-oxides for the cathode and anode. In addition, we discuss some emerging results on HE-solid electrolytes and HE-alloy anodes.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [41] Fullerene materials for lithium-ion battery applications
    Loutfy, RO
    Katagiri, S
    PERSPECTIVES OF FULLERENE NANOTECHNOLOGY, 2002, : 357 - 367
  • [42] Lithium redistribution around the crack tip of lithium-ion battery electrodes
    Yang, Le
    Chen, Hao-Sen
    Jiang, Hanqing
    Song, Wei-Li
    Fang, Daining
    SCRIPTA MATERIALIA, 2019, 167 : 11 - 15
  • [43] Preparation and High-performance Lithium-ion Storage of Cobalt-free Perovskite High-entropy Oxide Anode Materials
    Jia Yanggang
    Chen Shijie
    Shao Xia
    Cheng Jie
    Lin Na
    Fang Daolai
    Mao Aiqin
    Li Canhua
    ACTA CHIMICA SINICA, 2023, 81 (05) : 486 - 495
  • [45] From Electrodes to Electrodes: Building High-Performance Li-Ion Capacitors and Batteries from Spent Lithium-Ion Battery Carbonaceous Materials
    Aravindan, Vanchiappan
    Jayaraman, Sundaramurthy
    Tedjar, Farouk
    Madhavi, Srinivasan
    CHEMELECTROCHEM, 2019, 6 (05) : 1407 - 1412
  • [46] Surface-Stabilized High-Entropy Layered Oxyfluoride Cathode for Lithium-Ion Batteries
    Zheng, Qinfeng
    Ren, Zhouhong
    Zhang, Yixiao
    Liu, Xi
    Ma, Jun
    Li, Lina
    Chen, Liwei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (24): : 5553 - 5559
  • [47] Electron and Ion Transport in Lithium and Lithium-Ion Battery Negative and Positive Composite Electrodes
    Quilty, Calvin D.
    Wu, Daren
    Li, Wenzao
    Bock, David C.
    Wang, Lei
    Housel, Lisa M.
    Abraham, Alyson
    Takeuchi, Kenneth J.
    Marschilok, Amy C.
    Takeuchi, Esther S.
    CHEMICAL REVIEWS, 2023, 123 (04) : 1327 - 1363
  • [48] Research progress on high-entropy oxides as advanced anode, cathode, and solid-electrolyte materials for lithium-ion batteries
    Li, Xuelei
    Zhang, Weihua
    Lv, Kai
    Liu, Jingshun
    Bayaguud, Aruuhan
    JOURNAL OF POWER SOURCES, 2024, 620
  • [49] Additive Manufacturing of 3D Microlattice Lithium-Ion Battery Electrodes: A Review
    Dada, Modupeola
    Popoola, Patricia
    5TH INTERNATIONAL SYMPOSIUM ON NICKEL AND COBALT (NI-CO 2021), 2021, : 111 - 120
  • [50] Phase change materials for lithium-ion battery thermal management systems: A review
    Li, Zaichao
    Zhang, Yuang
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF ENERGY STORAGE, 2024, 80