Fixed-node diffusion Monte Carlo simulation of small ionized carbon clusters

被引:4
|
作者
Brito, B. G. A. [1 ]
Hai, G-Q [2 ]
Candido, L. [3 ]
机构
[1] Univ Fed Triangulo Mineiro, Dept Fis, Inst Ciencias Exatas Nat & Educ, BR-38025180 Uberaba, MG, Brazil
[2] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil
关键词
Carbon clusters; Atomic and electronic structure; Density functional theory; Quantum Monte Carlo; WAVE-FUNCTIONS; IONIZATION-POTENTIALS; SYSTEMATIC SEQUENCES; ELECTRON-CORRELATION; STABILITY; MOLECULES; ENERGIES; SPECTROSCOPY;
D O I
10.1016/j.cplett.2022.139888
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structural and energetic features of small cationic carbon clusters with up to ten atoms are investigated using the Hartree-Fock, density functional theory, and fixed-node diffusion Monte Carlo simulations. The results show that the cationic carbon clusters present significant structural changes with relevant Jahn-Teller distortion compared to the neutral ones. A satisfactory agreement with available experimental results is observed for ionization potential, relative binding energy, and atomic dissociation energy. Our calculations present quantitative investigations on the electron correlation effects in the cationic carbon clusters and show the important roles of the electron correlation in the stability of these clusters.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Fixed-Node, Importance-Sampling Diffusion Monte Carlo for Vibrational Structure with Accurate and Compact Trial States
    Bulik, Ireneusz W.
    Frisch, Michael J.
    Vaccaro, Patrick H.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (03) : 1554 - 1563
  • [42] Exact fixed-node quantum Monte Carlo: Self-optimizing procedure
    Huang, HX
    [J]. CHINESE JOURNAL OF CHEMISTRY, 2003, 21 (09) : 1118 - 1122
  • [43] PROOF FOR AN UPPER BOUND IN FIXED-NODE MONTE-CARLO FOR LATTICE FERMIONS
    TENHAAF, DFB
    VANBEMMEL, HJM
    VANLEEUWEN, JMJ
    VANSAARLOOS, W
    CEPERLEY, DM
    [J]. PHYSICAL REVIEW B, 1995, 51 (19): : 13039 - 13045
  • [44] A quantum computing approach to fixed-node Monte Carlo using classical shadows
    Blunt, Nick S.
    Caune, Laura
    Quiroz-Fernandez, Javiera
    [J]. arXiv,
  • [45] Exact Fixed-node Quantum Monte Carlo: Self-optimizing Procedure
    黄宏新
    [J]. Chinese Journal of Chemistry, 2003, (09) : 1118 - 1122
  • [46] Fixed-node diffusion Monte Carlo study of the BCS-BEC crossover in a bilayer system of fermionic dipoles
    Matveeva, N.
    Giorgini, S.
    [J]. PHYSICAL REVIEW A, 2014, 90 (05):
  • [47] Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids-A case study in diamond
    Benali, Anouar
    Gasperich, Kevin
    Jordan, Kenneth D.
    Applencourt, Thomas
    Luo, Ye
    Bennett, M. Chandler
    Krogel, Jaron T.
    Shulenburger, Luke
    Kent, Paul R. C.
    Loos, Pierre-Francois
    Scemama, Anthony
    Caffarel, Michel
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (18):
  • [48] Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities
    Rasch, Kevin M.
    Hu, Shuming
    Mitas, Lubos
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (04):
  • [49] Fixed-Node and Fixed-Phase Approximations and Their Relationship to Variable Spins in Quantum Monte Carlo
    Melton, Cody A.
    Mitas, Lubos
    [J]. RECENT PROGRESS IN QUANTUM MONTE CARLO, 2016, 1234 : 1 - 13
  • [50] Quantum Monte Carlo simulations of fermions.: A mathematical analysis of the fixed-node approximation
    Cances, Eric
    Jourdain, Benjamin
    Lelievre, Tony
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (09): : 1403 - 1440