An Advanced Data Fusion Method to Improve Wetland Classification Using Multi-Source Remotely Sensed Data

被引:8
|
作者
Judah, Aaron [1 ]
Hu, Baoxin [1 ]
机构
[1] York Univ, Dept Earth & Space Sci & Engn, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
wetlands; multi-source; data fusion; Dempster-Shafer theory; random forest; ensemble classifier; HYPERSPECTRAL IMAGE CLASSIFICATION; COASTAL WETLAND; LEARNING CLASSIFICATION; DECISION FUSION; FEATURES; SAR; RETRIEVAL; TREES;
D O I
10.3390/s22228942
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The goal of this research was to improve wetland classification by fully exploiting multi-source remotely sensed data. Three distinct classifiers were designed to distinguish individual or compound wetland categories using random forest (RF) classification. They were determined, in part, to best use the available remotely sensed features in order to maximize that information and to maximize classification accuracy. The results from these classifiers were integrated according to Dempster-Shafer theory (D-S theory). The developed method was tested on data collected from a study area in Northern Alberta, Canada. The data utilized were Landsat-8 and Sentinel-2 (multi-spectral), Sentinel-1 (synthetic aperture radar-SAR), and digital elevation model (DEM). Classification of fen, bog, marsh, swamps, and upland resulted in an overall accuracy of 0.93 using the proposed methodology, an improvement of 5% when compared to a traditional classification method based on the aggregated features from these data sources. It was noted that, with the traditional method, some pixels were misclassified with a high level of confidence (>85%). Such misclassification was significantly reduced (by similar to 10%) by the proposed method. Results also showed that some features important in separating compound wetland classes were not considered important using the traditional method based on the RF feature selection mechanism. When used in the proposed method, these features increased the classification accuracy, which demonstrated that the proposed method provided an effective means to fully employ available data to improve wetland classification.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Influence of Multi-Source and Multi-Temporal Remotely Sensed and Ancillary Data on the Accuracy of Random Forest Classification of Wetlands in Northern Minnesota
    Corcoran, Jennifer M.
    Knight, Joseph F.
    Gallant, Alisa L.
    REMOTE SENSING, 2013, 5 (07) : 3212 - 3238
  • [22] Consistency analysis of multi-source remotely sensed images for land cover classification
    Du, Peijun
    Li, Guangli
    Yuan, Linshan
    Aplin, Paul
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON SPATIAL ACCURACY ASSESSMENT IN NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES, VOL II: ACCURACY IN GEOMATICS, 2008, : 203 - 210
  • [23] Key Data Source Identification Method Based on Multi-Source Traffic Data Fusion
    Li, Shuo
    Zhang, Mengmeng
    Chen, Yongheng
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 364 - 375
  • [24] Using granular objects in multi-source data fusion
    Yager, RR
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 324 - 330
  • [25] Multi-source Heterogeneous Data Fusion
    Zhang, Lili
    Xie, Yuxiang
    Luan Xidao
    Zhang, Xin
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), 2018, : 47 - 51
  • [26] A framework for multi-source data fusion
    Yager, RR
    INFORMATION SCIENCES, 2004, 163 (1-3) : 175 - 200
  • [27] Multi-source data fusion for economic data analysis
    Li, Menggang
    Wang, Fang
    Jia, Xiaojun
    Li, Wenrui
    Li, Ting
    Rui, Guangwei
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10): : 4729 - 4739
  • [28] Tourism Information Data Processing Method Based on Multi-Source Data Fusion
    Li, YaoGuang
    Gan, HeChi
    JOURNAL OF SENSORS, 2021, 2021
  • [29] Multi-source data fusion for economic data analysis
    Menggang Li
    Fang Wang
    Xiaojun Jia
    Wenrui Li
    Ting Li
    Guangwei Rui
    Neural Computing and Applications, 2021, 33 : 4729 - 4739
  • [30] Flood Mapping Using Multi-Source Remotely Sensed Data and Logistic Regression in the Heterogeneous Mountainous Regions in North Korea
    Lim, Joongbin
    Lee, Kyoo-seock
    REMOTE SENSING, 2018, 10 (07):