Intelligent Online Health Estimation for Lithium-Ion Batteries Based on a Parallel Attention Network Combining Multivariate Time Series

被引:13
|
作者
Tan, Xiaojun [1 ]
Liu, Xiaoxi [1 ]
Wang, Huanyu [1 ]
Fan, Yuqian [1 ]
Feng, Guodong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou, Peoples R China
关键词
lithium-ion battery; SoH; health feature extraction; neural network; attention mechanism; REMAINING USEFUL LIFE; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; STATE; PREDICTION; CAPACITY;
D O I
10.3389/fenrg.2022.844985
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the development of cloud and edge computing, data-driven methods for estimating a Li-ion battery's state of health are becoming increasingly attractive. However, existing data-driven estimation methods have problems of low accuracy and weak robustness that need to be solved. Focusing on these points, this paper proposes a parallel attention network combining multivariate time series to extract the mapping relationship between the selected health features and the state of health. First, multivariate time series are extracted, which can describe battery aging characteristics at different scales. Then, a novel parallel learning framework is designed by integrating long short-term memory cells and an attention mechanism, which can make full use of the health features and help to solve the challenging issues of estimation accuracy and robustness. Experimental results show that the proposed model is able to obtain estimation results for different batteries with a mean absolute percentage error of less than 1%. Compared with existing methods, the maximum error of the proposed model is 38% lower on average. Furthermore, even under measurement noise injections of 50 dB, a preferable estimation result (maximum error of 3.36%) can still be achieved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Online Internal Temperature Estimation for Lithium-Ion Batteries Based on Kalman Filter
    Sun, Jinlei
    Wei, Guo
    Pei, Lei
    Lu, Rengui
    Song, Kai
    Wu, Chao
    Zhu, Chunbo
    ENERGIES, 2015, 8 (05): : 4400 - 4415
  • [32] State Of Health Estimation of Lithium-ion Batteries Based On Regression Techniques
    Azizi, Chaima
    Ben Ali, Jaouher
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2017, : 493 - 498
  • [33] Applying Neural Network to Health Estimation and Lifetime Prediction of Lithium-Ion Batteries
    Li, Penghua
    Wu, Xiankui
    Grosu, Radu
    Hou, Jie
    Ilolov, Mamadsho
    Xiang, Sheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (01): : 4224 - 4248
  • [34] An online state of health estimation method for lithium-ion batteries based on time partitioning and data-driven model identification
    Mussi, Marco
    Pellegrino, Luigi
    Restelli, Marcello
    Trov, Francesco
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [35] Wavelet Based Relative State of Health Estimation for Lithium-Ion Batteries
    Xu, Jun
    Mei, Xuesong
    Wang, Xiao
    Zhao, Yunfei
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 3101 - 3106
  • [36] State of health estimation of lithium-ion batteries based on the regional triangle
    Zhang, Ya
    Cai, Yongxiang
    Liu, Wei
    Dou, Zhenlan
    Yao, Bin
    Zhang, Bide
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    JOURNAL OF ENERGY STORAGE, 2023, 69
  • [37] State of health estimation of lithium-ion batteries based on the regional frequency
    Huang, Shaotang
    Liu, Cuicui
    Sun, Huiqin
    Liao, Qiangqiang
    JOURNAL OF POWER SOURCES, 2022, 518
  • [38] An Online SOC and SOH Estimation Model for Lithium-Ion Batteries
    Huang, Shyh-Chin
    Tseng, Kuo-Hsin
    Liang, Jin-Wei
    Chang, Chung-Liang
    Pecht, Michael G.
    ENERGIES, 2017, 10 (04):
  • [39] State of Health Estimation Methods for Lithium-Ion Batteries
    Nuroldayeva, Gulzat
    Serik, Yerkin
    Adair, Desmond
    Uzakbaiuly, Berik
    Bakenov, Zhumabay
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023 (NA)
  • [40] An intelligent fusion estimation method for state of charge estimation of lithium-ion batteries
    Cheng, Xingqun
    Liu, Xiaolong
    Li, Xinxin
    Yu, Quanqing
    ENERGY, 2024, 286