Solid-state nanopore sensors

被引:386
|
作者
Xue, Liang [1 ]
Yamazaki, Hirohito [2 ,3 ]
Ren, Ren [1 ]
Wanunu, Meni [2 ]
Ivanov, Aleksandar P. [1 ]
Edel, Joshua B. [1 ]
机构
[1] Imperial Coll London, Dept Chem, Mol Sci Res Hub, London, England
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[3] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo, Japan
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 日本学术振兴会;
关键词
SINGLE-MOLECULE DETECTION; ATOMIC LAYER DEPOSITION; DESIGNED DNA CARRIERS; RESISTIVE-PULSE MEASUREMENTS; LABEL-FREE; GRAPHENE NANORIBBON; PLASMONIC NANOPORE; ALPHA-HEMOLYSIN; ELECTRON-BEAM; NANOPIPETTES DETECTION;
D O I
10.1038/s41578-020-0229-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanopore sensors enable the solution-based analysis of nucleic acids, proteins and other biomolecules at the single-molecule level. This Review discusses new fabrication and sensing strategies - including field-effect transistors, quantum tunnelling and optical methods - that enhance the sensitivity and selectivity of nanopores. Nanopore-based sensors have established themselves as a prominent tool for solution-based, single-molecule analysis of the key building blocks of life, including nucleic acids, proteins, glycans and a large pool of biomolecules that have an essential role in life and healthcare. The predominant molecular readout method is based on measuring the temporal fluctuations in the ionic current through the pore. Recent advances in materials science and surface chemistries have not only enabled more robust and sensitive devices but also facilitated alternative detection modalities based on field-effect transistors, quantum tunnelling and optical methods such as fluorescence and plasmonic sensing. In this Review, we discuss recent advances in nanopore fabrication and sensing strategies that endow nanopores not only with sensitivity but also with selectivity and high throughput, and highlight some of the challenges that still need to be addressed.
引用
收藏
页码:931 / 951
页数:21
相关论文
共 50 条
  • [1] Solid-state nanopore sensors
    Liang Xue
    Hirohito Yamazaki
    Ren Ren
    Meni Wanunu
    Aleksandar P. Ivanov
    Joshua B. Edel
    [J]. Nature Reviews Materials, 2020, 5 : 931 - 951
  • [2] Author Correction: Solid-state nanopore sensors
    Liang Xue
    Hirohito Yamazaki
    Ren Ren
    Meni Wanunu
    Aleksandar P. Ivanov
    Joshua B. Edel
    [J]. Nature Reviews Materials, 2020, 5 (12) : 952 - 952
  • [3] Microfluidic Systems Applied in Solid-State Nanopore Sensors
    Fu, Jiye
    Wu, Linlin
    Qiao, Yi
    Tu, Jing
    Lu, Zuhong
    [J]. MICROMACHINES, 2020, 11 (03)
  • [4] Integrated microfluidic environment for solid-state nanopore sensors
    Fekete, Z.
    Huszka, G.
    Pongracz, A.
    Jagerszki, Gy
    Gyurcsanyi, R. E.
    Vrouwe, E.
    Fuerjes, P.
    [J]. 26TH EUROPEAN CONFERENCE ON SOLID-STATE TRANSDUCERS, EUROSENSOR 2012, 2012, 47 : 13 - 16
  • [5] Recent advances in integrated solid-state nanopore sensors
    Rahman, Mahmudur
    Sampad, Mohammad Julker Neyen
    Hawkins, Aaron
    Schmidt, Holger
    [J]. LAB ON A CHIP, 2021, 21 (16) : 3030 - 3052
  • [6] High-Bandwidth Solid-State Nanopore Sensors
    Rosenstein, Jacob
    Wanunu, Meni
    Drndic, Marija
    Shepard, Kenneth L.
    [J]. BIOPHYSICAL JOURNAL, 2012, 102 (03) : 428A - 428A
  • [7] Solid-State Nanopore
    Yuan, Zhishan
    Wang, Chengyong
    Yi, Xin
    Ni, Zhonghua
    Chen, Yunfei
    Li, Tie
    [J]. NANOSCALE RESEARCH LETTERS, 2018, 13
  • [8] Solid-State Nanopore
    Zhishan Yuan
    Chengyong Wang
    Xin Yi
    Zhonghua Ni
    Yunfei Chen
    Tie Li
    [J]. Nanoscale Research Letters, 2018, 13
  • [9] Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors
    Benjamin Cressiot
    Sandra J. Greive
    Mehrnaz Mojtabavi
    Alfred A. Antson
    Meni Wanunu
    [J]. Nature Communications, 9
  • [10] Solid-State Nanopore Sensors with Enhanced Sensitivity through Nucleic Acid Amplification
    Zhang, Xiaojin
    Dou, Huimin
    Chen, Xiaorui
    Lin, Meihua
    Dai, Yu
    Xia, Fan
    [J]. ANALYTICAL CHEMISTRY, 2023, 95 (47) : 17153 - 17161