Solid Electrolyte Interphase Evolution on Lithium Metal Electrodes Followed by Scanning Electrochemical Microscopy Under Realistic Battery Cycling Current Densities

被引:23
|
作者
Krueger, Bastian [1 ]
Balboa, Luis [1 ]
Dohmann, Jan Frederik [2 ]
Winter, Martin [2 ,3 ]
Bieker, Peter [2 ,4 ]
Wittstock, Gunther [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Dept Chem, Sch Math & Sci, D-26111 Oldenburg, Germany
[2] MEET, Corrensstr 46, D-48149 Munster, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Corrensstr 46, D-48149 Munster, Germany
[4] Univ Munster, Inst Phys Chem, Corrensstr 28-30, D-48149 Munster, Germany
来源
CHEMELECTROCHEM | 2020年 / 7卷 / 17期
关键词
lithium metal electrode; solid electrolyte interphase; scanning electrochemical microscopy; charging-discharging cycles; dendrite; LI-ION; CARBONATE; SEI; KINETICS;
D O I
10.1002/celc.202000441
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium metal electrodes were cycled in 1 M LiClO4 in propylene carbonate with different current densities. The local protecting properties of the solid electrolyte interphase (SEI) were probed by scanning electrochemical microscopy (SECM) in the feedback mode directly within the cell in between charging-discharging cycles. This was enabled by placing the negative electrode into an in-house micro-milled cell with a central opening in the counter electrode for inserting the microelectrode. Finite element simulation of the secondary current distribution proved that the current distribution deviates only slightly in the area of the opening provided that the SECM microelectrode is retracted during the charging-discharging cycles. The development of lithium deposits was observed by SECM and can be linked to the used charging-discharging protocol. The Li metal of protruding deposits is significantly more active for electron transfer to the mediator than the remaining parts of the surface. The developed hardware and methodology can be directly applied to other electrolytes or other battery electrodes forming protective films.
引用
收藏
页码:3590 / 3596
页数:7
相关论文
共 50 条
  • [31] Editors' Choice-Investigation of the Dynamic Evolution of the Cathode-Electrolyte Interphase Using Scanning Electrochemical Microscopy
    Li, Guoxin
    Guo, Congshan
    Lv, Wenjie
    Zhao, Jin
    Lv, Zhizhen
    Chen, Zhihui
    Meng, Zeyi
    Tang, Jigui
    Hui, Jingshu
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (02)
  • [32] Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries
    Richard J.-Y. Park
    Christopher M. Eschler
    Cole D. Fincher
    Andres F. Badel
    Pinwen Guan
    Matt Pharr
    Brian W. Sheldon
    W. Craig Carter
    Venkatasubramanian Viswanathan
    Yet-Ming Chiang
    Nature Energy, 2021, 6 : 314 - 322
  • [33] Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries
    Park, Richard J. -Y.
    Eschler, Christopher M.
    Fincher, Cole D.
    Badel, Andres F.
    Guan, Pinwen
    Pharr, Matt
    Sheldon, Brian W.
    Carter, W. Craig
    Viswanathan, Venkatasubramanian
    Chiang, Yet-Ming
    NATURE ENERGY, 2021, 6 (03) : 314 - 322
  • [34] Impact of Solid Electrolyte Interphase lithium salts on cycling ability of Li-ion battery: Beneficial effect of glymes additives
    Chretien, Fabien
    Jones, Jennifer
    Damas, Christine
    Lemordant, Daniel
    Willmann, Patrick
    Anouti, Meriem
    JOURNAL OF POWER SOURCES, 2014, 248 : 969 - 977
  • [35] In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy
    Zampardi, Giorgia
    Ventosa, Edgar
    La Mantia, Fabio
    Schuhmann, Wolfgang
    CHEMICAL COMMUNICATIONS, 2013, 49 (81) : 9347 - 9349
  • [36] Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
    Gao, Yue
    Yan, Zhifei
    Gray, Jennifer L.
    He, Xin
    Wang, Daiwei
    Chen, Tianhang
    Huang, Qingquan
    Li, Yuguang C.
    Wang, Haiying
    Kim, Seong H.
    Mallouk, Thomas E.
    Wang, Donghai
    NATURE MATERIALS, 2019, 18 (04) : 384 - +
  • [37] Revealing the Dual-Layered Solid Electrolyte Interphase on Lithium Metal Anodes via Cryogenic Electron Microscopy
    Wi, Tae-Ung
    Park, Sung O.
    Yeom, Su Jeong
    Kim, Min-Ho
    Kristanto, Imanuel
    Wang, Haotian
    Kwak, Sang Kyu
    Lee, Hyun-Wook
    ACS ENERGY LETTERS, 2023, 8 (05) : 2193 - 2200
  • [38] Nickel Impurities in the Solid-Electrolyte Interphase of Lithium-Metal Anodes Revealed by Cryogenic Electron Microscopy
    Vila, Rafael A.
    Huang, William
    Cui, Yi
    CELL REPORTS PHYSICAL SCIENCE, 2020, 1 (09):
  • [39] Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy
    Cheng, Diyi
    Wynn, Thomas A.
    Wang, Xuefeng
    Wang, Shen
    Zhang, Minghao
    Shimizu, Ryosuke
    Bai, Shuang
    Nguyen, Han
    Fang, Chengcheng
    Kim, Min-cheol
    Li, Weikang
    Lu, Bingyu
    Kim, Suk Jun
    Meng, Ying Shirley
    JOULE, 2020, 4 (11) : 2484 - 2500
  • [40] Evolution of Solid Electrolyte Interphase during Cycling and Its Effect on Electrochemical Properties of LiMn2O4
    Hwang, Jintae
    Jang, Ho
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (01) : A103 - A107