Ultrahigh-temperature melt printing of multi-principal element alloys

被引:13
|
作者
Wang, Xizheng [1 ,2 ]
Zhao, Yunhao [3 ]
Chen, Gang [1 ]
Zhao, Xinpeng [1 ]
Liu, Chuan [4 ]
Sridar, Soumya [3 ]
Pizano, Luis Fernando Ladinos [3 ]
Li, Shuke [1 ]
Brozena, Alexandra H. [1 ]
Guo, Miao [1 ]
Zhang, Hanlei [3 ]
Wang, Yuankang [3 ]
Xiong, Wei [2 ]
Hu, Liangbing [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Ctr Mat Innovat, College Pk, MD 20742 USA
[3] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[4] Northwestern Univ, Ctr Hierarch Mat Design, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
HIGH-ENTROPY ALLOY; LASER; MICROSTRUCTURE; COPPER; RANGE;
D O I
10.1038/s41467-022-34471-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multi-principal element alloy (MPEA) 3D printing is challenging due to the tradeoff between achieving high-temperature and sufficient heating zone. Here, the authors report an ultrahigh-temperature melt printing method that can achieve rapid melting and uniform elemental mixing for MPEA fabrication. Multi-principal element alloys (MPEA) demonstrate superior synergetic properties compared to single-element predominated traditional alloys. However, the rapid melting and uniform mixing of multi-elements for the fabrication of MPEA structural materials by metallic 3D printing is challenging as it is difficult to achieve both a high temperature and uniform temperature distribution in a sufficient heating source simultaneously. Herein, we report an ultrahigh-temperature melt printing method that can achieve rapid multi-elemental melting and uniform mixing for MPEA fabrication. In a typical fabrication process, multi-elemental metal powders are loaded into a high-temperature column zone that can be heated up to 3000 K via Joule heating, followed by melting on the order of milliseconds and mixing into homogenous alloys, which we attribute to the sufficiently uniform high-temperature heating zone. As proof-of-concept, we successfully fabricated single-phase bulk NiFeCrCo MPEA with uniform grain size. This ultrahigh-temperature rapid melt printing process provides excellent potential toward MPEA 3D printing.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Harnessing instability for work hardening in multi-principal element alloys
    Xu, Bowen
    Duan, Huichao
    Chen, Xuefei
    Wang, Jing
    Ma, Yan
    Jiang, Ping
    Yuan, Fuping
    Wang, Yandong
    Ren, Yang
    Du, Kui
    Wei, Yueguang
    Wu, Xiaolei
    NATURE MATERIALS, 2024, 23 (06) : 755 - 761
  • [22] Activation Volume and Energy for Dislocation Nucleation in Multi-Principal Element Alloys
    Mridha, Sanghita
    Sadeghilaridjani, Maryam
    Mukherjee, Sundeep
    METALS, 2019, 9 (02)
  • [23] Violation of the Cauchy-Born rule in multi-principal element alloys
    Ghosh, Swarnava
    APPLIED PHYSICS LETTERS, 2024, 124 (17)
  • [24] Accelerated exploration of multi-principal element alloys with solid solution phases
    Senkov, O. N.
    Miller, J. D.
    Miracle, D. B.
    Woodward, C.
    NATURE COMMUNICATIONS, 2015, 6
  • [25] Hydrogen embrittlement and failure mechanisms of multi-principal element alloys: A review
    Li, Xinfeng
    Yin, Jing
    Zhang, Jin
    Wang, Yanfei
    Song, Xiaolong
    Zhang, Yong
    Ren, Xuechong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 122 : 20 - 32
  • [26] A computational approach for mapping electrochemical activity of multi-principal element alloys
    Yuwono, Jodie A.
    Li, Xinyu
    Dolezal, Tyler D.
    Samin, Adib J.
    Shi, Javen Qinfeng
    Li, Zhipeng
    Birbilis, Nick
    NPJ MATERIALS DEGRADATION, 2023, 7 (01)
  • [27] Effects of Iron on Microstructure and Properties of CoCrFexNi Multi-principal Element Alloys
    Han, Linge
    Jiang, Hui
    Qiao, Dongxu
    Lu, Yiping
    Wang, Tongmin
    ADVANCED FUNCTIONAL MATERIALS (CMC 2017), 2018, : 253 - 258
  • [28] Recent advances in computational design of structural multi-principal element alloys
    Anand, Abu
    Liu, Szu-Jia
    Singh, Chandra Veer
    ISCIENCE, 2023, 26 (10)
  • [29] pyMPEALab Toolkit for Accelerating Phase Design in Multi-principal Element Alloys
    Upadesh Subedi
    Anil Kunwar
    Yuri Amorim Coutinho
    Khem Gyanwali
    Metals and Materials International, 2022, 28 : 269 - 281
  • [30] Hexagonal (CoCrCuTi)100-xFex multi-principal element alloys
    Derimow, N.
    Jaime, R. F.
    Le, B.
    Abbaschian, R.
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 261