NUMERICAL UPSCALING FOR WAVE EQUATIONS WITH TIME-DEPENDENT MULTISCALE COEFFICIENTS*

被引:1
|
作者
Maier, Bernhard [1 ]
Verfuerth, Barbara [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Angew & Numer Math, D-76131 Karlsruhe, Karlsruhe, Germany
来源
MULTISCALE MODELING & SIMULATION | 2022年 / 20卷 / 04期
关键词
Key words; wave equation; numerical homogenization; multiscale method; time-dependent mul-tiscale coefficients; a priori estimates; 2ND-ORDER HYPERBOLIC-EQUATIONS; FINITE-ELEMENT METHODS; HOMOGENIZATION; CONTINUUM;
D O I
10.1137/21M1438244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the classical wave equation with time-dependent, spatially multiscale coefficients. We propose a fully discrete computational multiscale method in the spirit of the localized orthogonal decomposition in space with a backward Euler scheme in time. We show optimal convergence rates in space and time beyond the assumptions of spatial periodicity or scale separation of the coefficients. Further, we propose an adaptive update strategy for the time-dependent multiscale basis. Numerical experiments illustrate the theoretical results and showcase the practicability of the adaptive update strategy.
引用
收藏
页码:1169 / 1190
页数:22
相关论文
共 50 条