Design and optimization of composite phase change material for cylindrical thermal energy storage

被引:5
|
作者
Tamraparni, Achutha [1 ]
Hoe, Alison [2 ]
Deckard, Michael [2 ]
Zhang, Chen [3 ]
Malone, Nathan [1 ]
Elwany, Alaa [3 ]
Shamberger, Patrick J. [2 ]
Felts, Jonathan R. [1 ]
机构
[1] J Mike Walker 66, Dept Mech Engn, College Stn, TX 77840 USA
[2] Dept Mat Sci & Engn, College Stn, TX USA
[3] Dept Ind Syst & Engn, College Stn, TX USA
关键词
Phase change materials; Thermal energy storage; Composite phase change material; Cylindrical thermal energy storage; HEAT-TRANSFER; CONDUCTIVITY ENHANCEMENT; PCM; PERFORMANCE; MANAGEMENT; POWER; SYSTEM; FOAMS; SINKS; TUBE;
D O I
10.1016/j.ijheatmasstransfer.2023.123995
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase change materials store thermal energy in the form of latent heat, and are often integrated with high thermal conductivity metals to make composites that have both high power density and large en-ergy storage capacity. In this study, we provide a theoretical framework to design and optimize cylindrical composites with three figures of merit - minimization of temperature rise, maximization of the effective volumetric heat capacity and maximization of the effective heat capacity based on mass. We validate the figures of merit experimentally by 3D printing AlSi12 alloy and using octadecane as phase change ma-terial for a heat flux of 13.3 W cm -2 and heating time of 10 s. The metal component volume fractions in the printed structures vary from 15% to 70% for straight fin structures, 10% to 70% for the SC lattice structures, and 20% to 70% for branching fin structures. When minimizing temperature rise, the optimum volume fraction of thermally conductive material is 0.5-0.7. When maximizing the effective volumetric heat capacity, the optimum volume fraction for the high conductivity material is 0.3-0.5. Finally, when maximizing the effective heat capacity by mass in cylindrical composites, the optimum volume fraction for the high conductivity material is 0.2-0.3. Importantly, the optimum values depend on the applied thermal load, which is not captured in existing figures of merit for thermal storage systems. The vol-umetric and mass based heat capacity values of the optimized composites identified in this study are at least 10x higher when compared to single component PCMs that are widely used for volumetric and mass based thermal storage systems. The figures of merit developed here can assess the performance of most composite PCM systems and help to design future cylindrical composites while accounting for the thermal loads specific to the thermal storage application.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Thermal energy storage using a phase change material
    Hamdan, MA
    Elwerr, FA
    SOLAR ENERGY, 1996, 56 (02) : 183 - 189
  • [22] Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage
    Zhao, Liang
    Xing, Yuming
    Liu, Xin
    Luo, Yegang
    APPLIED THERMAL ENGINEERING, 2018, 143 : 172 - 181
  • [23] Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage
    Sivasamy, P.
    Harikrishnan, S.
    Jayavel, R.
    Hussain, S. Imran
    Kalaiselvam, S.
    Lu, Li
    MATERIALS RESEARCH EXPRESS, 2019, 6 (10)
  • [24] Development and characterization of composite phase change material: Thermal conductivity and latent heat thermal energy storage
    Trigui, Abdelwaheb
    Karkri, Mustapha
    Boudaya, Chokri
    Candau, Yves
    Ibos, Laurent
    COMPOSITES PART B-ENGINEERING, 2013, 49 : 22 - 35
  • [25] Impregnation of porous material with phase change material for thermal energy storage
    Nomura, Takahiro
    Okinaka, Noriyuki
    Akiyama, Tomohiro
    MATERIALS CHEMISTRY AND PHYSICS, 2009, 115 (2-3) : 846 - 850
  • [26] Design and experimental investigation of a novel thermal energy storage unit with phase change material
    Zhang, Tingwei
    Lu, Gaofeng
    Zhai, Xiaoqiang
    ENERGY REPORTS, 2021, 7 : 1818 - 1827
  • [27] Enhanced laminated composite phase change material for energy storage
    Darkwa, J.
    Zhou, T.
    ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (02) : 810 - 815
  • [28] PHASE CHANGE MATERIAL SOLIDIFICATION IN A FINNED CYLINDRICAL SHELL THERMAL ENERGY STORAGE An approximate analytical approach
    Mosaffa, Amirhossein
    Talati, Faramarz
    Rosen, Marc A.
    Basirat Tabrizi, Hassan
    THERMAL SCIENCE, 2013, 17 (02): : 407 - 418
  • [29] THERMAL ENERGY STORAGE THROUGH MELTING OF A COMMERCIAL PHASE-CHANGE MATERIAL IN A HORIZONTAL CYLINDRICAL ANNULUS
    Tabassum, Tonny
    Hasan, Mainul
    Begum, Latifa
    JOURNAL OF ENHANCED HEAT TRANSFER, 2018, 25 (03) : 211 - 237