MACHINE LEARNING-GUIDED SUBPHENOTYPING OF CRITICALLY ILL PATIENTS AFTER CARDIAC SURGERY

被引:0
|
作者
Desman, Jacob [1 ]
McCarthy, Paul [2 ]
Yimen, Mekeleya [1 ]
Smith, Gordon [2 ]
Kohli-Seth, Roopa [3 ]
Nadkarni, Girish [1 ]
Sakhuja, Ankit [2 ]
机构
[1] Icahn Sch Med, New York, NY USA
[2] WVU, Morgantown, WV USA
[3] Mt Sinai Hlth Syst, New York, NY USA
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
154
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Predicting Discharge Destination of Critically Ill Patients Using Machine Learning
    Abad, Zahra Shakeri Hossein
    Maslove, David M.
    Lee, Joon
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (03) : 827 - 837
  • [32] Predicting Atrial Fibrillation in Critically Ill Patients: A Machine Learning Approach
    Alomari, Laith
    Al-Fakhouri, Zaid
    Jarrar, Yaman
    [J]. CIRCULATION, 2023, 148
  • [33] MACHINE LEARNING MODEL FOR DIAGNOSIS OF DIABETES AMONG CRITICALLY ILL PATIENTS
    Mathur, Piyush
    Panda, Ritu
    Sinha, Saumya
    Pradhan, Smitan
    [J]. CRITICAL CARE MEDICINE, 2022, 50 (01) : 272 - 272
  • [34] Plasma biomarkers and delirium in critically ill patients after cardiac surgery: A prospective observational cohort study
    Su, Li-Jing
    Chen, Mei-Jing
    Yang, Rong
    Zou, Hong
    Chen, Ting -Ting
    Li, Sai-Lan
    Guo, Yuan
    Hu, Rong-Fang
    [J]. HEART & LUNG, 2023, 59 : 139 - 145
  • [35] Association of postoperative delirium with hypotension in critically ill patients after cardiac surgery: a prospective observational study
    Othman, Saleh Mohammed Alhaj
    Aziz, Mohammed Ali Ali
    Al-Mushiki, Gaber Musaed Ali
    Sriwayyapram, Chanyanud
    Okubai, Tecleab
    Al-Muwaffaq, Gamil
    Xu, Qin
    Alqudaimi, Mohammed
    [J]. JOURNAL OF CARDIOTHORACIC SURGERY, 2024, 19 (01)
  • [36] Use of argatroban: Experiences in continuous renal replacement therapy in critically ill patients after cardiac surgery
    Klingele, Matthias
    Bomberg, Hagen
    Lerner-Graeber, Anne
    Fliser, Danilo
    Poppleton, Aaron
    Schaefers, Hans J.
    Groesdonk, Heinrich V.
    [J]. JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2014, 147 (06): : 1918 - 1924
  • [37] Dynamic Pituitary-Adrenal Interactions in the Critically Ill after Cardiac Surgery
    Gibbison, Ben
    Keenan, Daniel M.
    Roelfsema, Ferdinand
    Evans, Jon
    Phillips, Kirsty
    Rogers, Chris A.
    Angelini, Gianni D.
    Lightman, Stafford L.
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2020, 105 (05):
  • [38] Machine learning-guided discovery and design of non-hemolytic peptides
    Plisson, Fabien
    Ramirez-Sanchez, Obed
    Martinez-Hernandez, Cristina
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Remifentanil in critically ill cardiac patients
    Ruggeri, Laura
    Landoni, Giovanni
    Guarracino, Fabio
    Scolletta, Sabino
    Bignami, Elena
    Zangrillo, Alberto
    [J]. ANNALS OF CARDIAC ANAESTHESIA, 2011, 14 (01) : 6 - 12
  • [40] Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics
    Claire N. Bedbrook
    Kevin K. Yang
    J. Elliott Robinson
    Elisha D. Mackey
    Viviana Gradinaru
    Frances H. Arnold
    [J]. Nature Methods, 2019, 16 : 1176 - 1184