Direct Optimization of Fast-Ion Confinement in Stellarators

被引:10
|
作者
Bindel, David [1 ]
Landreman, Matt [2 ]
Padidar, Misha [3 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[3] Cornell Univ, Ctr Appl Math, Ithaca, NY 14850 USA
关键词
stellarators; stochastic optimization; magnetic confinement fusion; alpha particles; PHYSICS; DESIGN; DIFFUSION; TRANSPORT;
D O I
10.1088/1361-6587/acd141
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Confining energetic ions such as alpha particles is a prime concern in the design of stellarators. However, directly measuring alpha confinement through numerical simulation of guiding-center trajectories has been considered to be too computationally expensive and noisy to include in the design loop, and instead has been most often used only as a tool to assess stellarator designs post hoc. In its place, proxy metrics, simplified measures of confinement, have often been used to design configurations because they are computationally more tractable and have been shown to be effective. Despite the success of proxies, their correlation with direct trajectory calculations is known to be imperfect. In this study, we optimize stellarator designs for improved alpha particle confinement without the use of proxy metrics. In particular, we numerically optimize an objective function that measures alpha particle losses by simulating alpha particle trajectories. While this method is computationally expensive, we find that it can be used successfully to generate configurations with low losses.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] LIMITS OF CONFINEMENT ENHANCEMENT FOR STELLARATORS
    Warmer, F.
    Beidler, C. D.
    Dinklage, A.
    Turkin, Y.
    Wolf, R.
    FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (04) : 727 - 740
  • [42] NEOCLASSICAL ENERGY CONFINEMENT IN STELLARATORS
    LOTZ, W
    NUHRENBERG, J
    SCHLUTER, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (01) : 73 - 84
  • [43] Measurement of a 2D fast-ion velocity distribution function by tomographic inversion of fast-ion D-alpha spectra
    Salewski, M.
    Geiger, B.
    Jacobsen, A. S.
    Garcia-Munoz, M.
    Heidbrink, W. W.
    Korsholm, S. B.
    Leipold, F.
    Madsen, J.
    Moseev, D.
    Nielsen, S. K.
    Rasmussen, J.
    Stejner, M.
    Tardini, G.
    Weiland, M.
    NUCLEAR FUSION, 2014, 54 (02)
  • [44] THE ENERGY CONFINEMENT TIME IN STELLARATORS
    KOVRIZHNYKH, LM
    NUCLEAR FUSION, 1984, 24 (04) : 435 - 443
  • [45] Direct losses of fast particles in multiple-toroidicity stellarators
    Smirnova, MS
    PHYSICS OF PLASMAS, 2001, 8 (12) : 5204 - 5213
  • [46] CONFINEMENT OF INJECTED PLASMAS IN STELLARATORS
    ELLIS, RA
    EUBANK, HP
    PHYSICS OF FLUIDS, 1968, 11 (05) : 1109 - &
  • [47] Conceptual design of the ITER fast-ion loss detector
    Garcia-Munoz, M.
    Kocan, M.
    Ayllon-Guerola, J.
    Bertalot, L.
    Bonnet, Y.
    Casal, N.
    Galdon, J.
    Garcia-Lopez, J.
    Giacomin, T.
    Gonzalez-Martin, J.
    Gunn, J. P.
    Jimenez-Ramos, M. C.
    Kiptily, V.
    Pinches, S. D.
    Rodriguez-Ramos, M.
    Reichle, R.
    Rivero-Rodriguez, J. F.
    Sanchis-Sanchez, L.
    Snicker, A.
    Vayakis, G.
    Veshchev, E.
    Vorpahl, Ch.
    Walsh, M.
    Walton, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [48] STRUCTURE AND FAST-ION CONDUCTION IN DELTA-AGI
    NIELD, VM
    KEEN, DA
    HAYES, W
    MCGREEVY, RL
    SOLID STATE IONICS, 1993, 66 (3-4) : 247 - 258
  • [49] Electron Distribution Near the Fast-Ion Track in Silicon
    Novikov, N. V.
    Chechenin, N. G.
    Shirokova, A. A.
    JOURNAL OF SURFACE INVESTIGATION, 2024, 18 (02): : 255 - 263
  • [50] Excitation of standing electron waves in fast-ion tracks
    Peregudov, VN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 93 (02) : 410 - 414