Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst via Infrared Spectroscopic Analysis

被引:2
|
作者
Zhao, Yanzhang [1 ]
Li, Huan [1 ]
Shan, Jieqiong [1 ,3 ]
Zhang, Zhen [2 ]
Li, Xinyu [2 ]
Shi, Javen Qinfeng [2 ]
Jiao, Yan [1 ]
Li, Haobo [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Univ Adelaide, Australian Inst Machine Learning, Adelaide, SA 5000, Australia
[3] City Univ Hong Kong, Dept Chem, Kowloon, Hong Kong 999077, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 49期
基金
澳大利亚研究理事会;
关键词
MODELS;
D O I
10.1021/acs.jpclett.3c02896
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) offer significant potential across various applications, yet our understanding of their formation mechanism remains limited. Notably, the pyrolysis of zeolitic imidazolate frameworks (ZIFs) stands as a pivotal avenue for SAC synthesis, of which the mechanism can be assessed through infrared (IR) spectroscopy. However, the prevailing analysis techniques still rely on manual interpretation. Here, we report a machine learning (ML)-driven analysis of the IR spectroscopy to unravel the pyrolysis process of Pt-doped ZIF-67 to synthesize Pt-Co3O4 SAC. Demonstrating a total Pearson correlation exceeding 0.7 with experimental data, the algorithm provides correlation coefficients for the selected structures, thereby confirming crucial structural changes with time and temperature, including the decomposition of ZIF and formation of Pt-O bonds. These findings reveal and confirm the formation mechanism of SACs. As demonstrated, the integration of ML algorithms, theoretical simulations, and experimental spectral analysis introduces an approach to deciphering experimental characterization data, implying its potential for broader adoption.
引用
收藏
页码:11058 / 11062
页数:5
相关论文
共 50 条
  • [1] Single-Atom Alloy Formation via Reaction-Driven Catalyst Restructuring
    Giannakakis, Georgios
    Soni, Yogita
    Novotny, Gregory L.
    Zha, Zhaoru
    Libretto, Nicole J.
    Dang, Yanliu
    Suib, Steven L.
    Miller, Jeffrey T.
    Sykes, E. Charles H.
    Deshlahra, Prashant
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (30) : 20989 - 20995
  • [2] Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning
    Zhang, Sheng
    Lu, Shuaihua
    Zhang, Peng
    Tian, Jianxiong
    Shi, Li
    Ling, Chongyi
    Zhou, Qionghua
    Wang, Jinlan
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
  • [3] Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning
    Sheng Zhang
    Shuaihua Lu
    Peng Zhang
    Jianxiong Tian
    Li Shi
    Chongyi Ling
    Qionghua Zhou
    Jinlan Wang
    Energy & Environmental Materials, 2023, 6 (01) : 382 - 388
  • [4] Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning
    Sheng Zhang
    Shuaihua Lu
    Peng Zhang
    Jianxiong Tian
    Li Shi
    Chongyi Ling
    Qionghua Zhou
    Jinlan Wang
    Energy & Environmental Materials , 2023, (01) : 382 - 388
  • [5] Identify the Activity Origin of Pt Single-Atom Catalyst via Atom-by-Atom Counting
    Liu, Shuhui
    Xu, Hua
    Liu, Dongdong
    Yu, Hao
    Zhang, Fan
    Zhang, Peng
    Zhang, Ruolin
    Liu, Wei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (37) : 15243 - 15249
  • [6] Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism
    Chen, Zhi Wen
    Lu, Zhuole
    Chen, Li Xin
    Jiang, Ming
    Chen, Dachang
    Singh, Chandra Veer
    CHEM CATALYSIS, 2021, 1 (01): : 183 - 195
  • [7] A Surrogate Machine Learning Model for the Design of Single-Atom Catalyst on Carbon and Porphyrin Supports towards Electrochemistry
    Tamtaji, Mohsen
    Chen, Shuguang
    Hu, Ziyang
    Goddard, William A., III
    Chen, GuanHua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (21): : 9992 - 10000
  • [8] Machine Learning Design of Single-Atom Catalysts for Nitrogen Fixation
    Wang, Shuyue
    Qian, Chao
    Zhou, Shaodong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (34) : 40656 - 40664
  • [9] Solving the structure of "single-atom" catalysts using machine learning - assisted XANES analysis
    Xiang, Shuting
    Huang, Peipei
    Li, Junying
    Liu, Yang
    Marcella, Nicholas
    Routh, Prahlad K.
    Li, Gonghu
    Frenkel, Anatoly, I
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (08) : 5116 - 5124
  • [10] Computational Single-Atom Catalyst Database Empowers the Machine Learning Assisted Design of High-Performance Catalysts
    Huang, Mingye
    Shi, Ruiyang
    Liu, Heng
    Ding, Wenjun
    Fan, Jiahang
    Zhou, Binghui
    Da, Bo
    Gao, Zhengyang
    Li, Hao
    Yang, Weijie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (10): : 5043 - 5053