Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism

被引:67
|
作者
Chen, Zhi Wen [1 ]
Lu, Zhuole [1 ]
Chen, Li Xin [1 ]
Jiang, Ming [1 ]
Chen, Dachang [1 ]
Singh, Chandra Veer [1 ,2 ]
机构
[1] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St,Suite 140, Toronto, ON M5S 3E4, Canada
[2] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
来源
CHEM CATALYSIS | 2021年 / 1卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
NITROGEN-FIXATION; EFFICIENT ELECTROCATALYST; CO; REDUCTION; AMMONIA; CONVERSION; MONOLAYER; OXYGEN; OPPORTUNITIES; ADSORPTION;
D O I
10.1016/j.checat.2021.03.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Single-atom catalysts (SACs) have provided new impetus to the field of catalysis because of their high activity, high selectivity, and theoretically full utilization of active atoms. However, the ambiguous activation mechanism prevents a clear understanding of the structure-activity relationship and results in a great challenge of rational design of SACs. Herein, by combining density functional theory (DFT) calculations with machine learning (ML), we explore 126 SACs to analyze and develop the structure-activity relationship for the electrocatalytic nitrogen reduction reaction (NRR). We first propose a bidirectional activation mechanism with a new descriptor for catalytic activity, which provides new insights for the rational design of SACs. More importantly, we establish a ML model for predicting the catalytic performance of NRR, validated by both DFT calculations and experimental works. The successful ML prediction in this work helps with the accelerated design and discovery of new catalysts by computational screening with high practical significance.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 50 条
  • [1] Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning
    Zhang, Sheng
    Lu, Shuaihua
    Zhang, Peng
    Tian, Jianxiong
    Shi, Li
    Ling, Chongyi
    Zhou, Qionghua
    Wang, Jinlan
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (01)
  • [2] Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning
    Sheng Zhang
    Shuaihua Lu
    Peng Zhang
    Jianxiong Tian
    Li Shi
    Chongyi Ling
    Qionghua Zhou
    Jinlan Wang
    Energy & Environmental Materials, 2023, 6 (01) : 382 - 388
  • [3] Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning
    Sheng Zhang
    Shuaihua Lu
    Peng Zhang
    Jianxiong Tian
    Li Shi
    Chongyi Ling
    Qionghua Zhou
    Jinlan Wang
    Energy & Environmental Materials , 2023, (01) : 382 - 388
  • [4] Machine learning-accelerated prediction of overpotential of oxygen evolution reaction of single-atom catalysts
    Wu, Lianping
    Guo, Tian
    Li, Teng
    ISCIENCE, 2021, 24 (05)
  • [5] Machine Learning Design of Single-Atom Catalysts for Nitrogen Fixation
    Wang, Shuyue
    Qian, Chao
    Zhou, Shaodong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (34) : 40656 - 40664
  • [6] Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning
    Wang, Dashuai
    Cao, Runfeng
    Hao, Shaogang
    Liang, Chen
    Chen, Guangyong
    Chen, Pengfei
    Li, Yang
    Zou, Xiaolong
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (03) : 820 - 830
  • [7] Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning
    Dashuai Wang
    Runfeng Cao
    Shaogang Hao
    Chen Liang
    Guangyong Chen
    Pengfei Chen
    Yang Li
    Xiaolong Zou
    Green Energy & Environment, 2023, 8 (03) : 820 - 830
  • [8] Single-Atom Catalysts for Hydrogen Activation
    Gao, Wenwen
    Liu, Shihuan
    Sun, Guangxun
    Zhang, Chao
    Pan, Yuan
    SMALL, 2023, 19 (26)
  • [9] Machine-learning-accelerated screening of hydrogen evolution catalysts in MBenes materials
    Sun, Xiang
    Zheng, Jingnan
    Gao, Yijing
    Qiu, Chenglong
    Yan, Yilong
    Yao, Zihao
    Deng, Shengwei
    Wang, Jianguo
    APPLIED SURFACE SCIENCE, 2020, 526
  • [10] Machine learning aided design of single-atom alloy catalysts for methane cracking
    Sun, Jikai
    Tu, Rui
    Xu, Yuchun
    Yang, Hongyan
    Yu, Tie
    Zhai, Dong
    Ci, Xiuqin
    Deng, Weiqiao
    NATURE COMMUNICATIONS, 2024, 15 (01)