Data-Driven Methods for Aviation Safety: From Data to Knowledge

被引:0
|
作者
Buselli, Irene [1 ]
Oneto, Luca [2 ]
Dambra, Carlo [1 ]
Verdonk Gallego, Christian [3 ]
Garcia Martinez, Miguel [1 ,2 ,3 ]
机构
[1] ZenaByte Srl, Via Cesarea 2, I-16121 Genoa, Italy
[2] Univ Genoa, Via Opera Pia 11a, I-16145 Genoa, Italy
[3] Crida, Juan Ignacio Luca de Tena 14, Madrid 28027, Spain
基金
欧盟地平线“2020”;
关键词
ATM; Safety; Digitisation; Data-Driven Models; Random Forests; Machine Learning; Loss of Separation; Safety reports;
D O I
10.1007/978-3-031-16281-7_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Demand upon the future Air Traffic Management (ATM) systems is expected to grow to possibly exceed available system capacity, pushing forward the need for automation and digitisation to maintain safety while increasing efficiency. This work focuses on a manifestation of ATM safety, the Loss of Separation (LoS), exploiting safety reports and ATM-system data (e.g., flights information, radar tracks, and Air Traffic Control events). Current research on Data-Driven Models (DDMs) is rarely able to support safety practitioners in the process of investigation of an incident after it happened. Furthermore, integration between different sources of data (i.e., free-text reports and structured ATM data) is almost never exploited. To fill these gaps, the authors propose (i) to automatically extract information from Safety Reports and (ii) to develop a DDM able to automatically assess if the Pilots or the Air Traffic Controller (ATCo) or both contributed to the incident, as soon as the LoS happens. The LoSs' reported in the public database of the Comision de Estudio y Analisis de Notificaciones de Incidentes de Transito Aereo (CEANITA) support the authors' proposal.
引用
收藏
页码:126 / 136
页数:11
相关论文
共 50 条
  • [31] A Comparison of Data-Driven Automatic Syllabification Methods
    Adsett, Connie R.
    Marchand, Yannick
    [J]. STRING PROCESSING AND INFORMATION RETRIEVAL, PROCEEDINGS, 2009, 5721 : 174 - 181
  • [32] Data-driven Software Security: Models and Methods
    Erlingsson, Ulfar
    [J]. 2016 IEEE 29TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM (CSF 2016), 2016, : 9 - 15
  • [33] Investigation on Data-Driven Life Prediction Methods
    Yang, Shuai
    Liu, Chaoqin
    Zhou, Xue
    Liang, Wei
    Miao, Qiang
    [J]. 2012 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (ICQR2MSE), 2012, : 674 - 680
  • [34] Challenges of data-driven methods in product development
    Mehlstäubl, Jan
    Gadzo, Emir
    Atzberger, Alexander
    Paetzold, Kristin
    [J]. Konstruktion, 2022, 74 (06): : 60 - 66
  • [35] Data-driven Methods for Modeling Social Perception
    Todorov, Alexander
    Dotsch, Ron
    Wigboldus, Daniel H. J.
    Said, Chris P.
    [J]. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS, 2011, 5 (10): : 775 - 791
  • [36] The safety management of data-driven safety-related systems
    Faulkner, AG
    Bennett, PA
    Pierce, RH
    Johnston, IHA
    Storey, N
    [J]. COMPUTER SAFETY, RELIABILITY AND SECURITY, PROCEEDINGS, 2000, 1943 : 86 - 95
  • [37] Evidential data integration to produce porphyry Cu prospectivity map, using a combination of knowledge and data-driven methods
    Riahi, Shokouh
    Bahroudi, Abbas
    Abedi, Maysam
    Aslani, Soheila
    Lentz, David R.
    [J]. GEOPHYSICAL PROSPECTING, 2022, 70 (02) : 421 - 437
  • [38] AI evaluation of repair data in the aviation industry – Data-driven condition diagnosis of aircraft components
    Hörstel, F.
    Kähler, F.
    Schüppstuh, T.
    [J]. WT Werkstattstechnik, 2022, 112 (09): : 613 - 618
  • [39] Data-Driven Reachability Analysis From Noisy Data
    Alanwar, Amr
    Koch, Anne
    Allgoewer, Frank
    Johansson, Karl Henrik
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 3054 - 3069
  • [40] DATA-DRIVEN
    Lev-Ram, Michal
    [J]. FORTUNE, 2016, 174 (05) : 76 - 81