Photo-thermal coupling to enhance CO2 hydrogenation toward CH4 over Ru/MnO/Mn3O4

被引:26
|
作者
Zhai, Jianxin [1 ,2 ]
Xia, Zhanghui [1 ,2 ]
Zhou, Baowen [3 ]
Wu, Haihong [1 ,2 ]
Xue, Teng [1 ,2 ]
Chen, Xiao [1 ,2 ]
Jiao, Jiapeng [1 ,2 ]
Jia, Shuaiqiang [1 ,2 ]
He, Mingyuan [1 ,2 ]
Han, Buxing [1 ,2 ,4 ]
机构
[1] East China Normal Univ, Sch Chem & Mol Engn, Shanghai Key Lab Green Chem & Chem Proc, State Key Lab Petr Mol & Proc Engn, Shanghai 200062, Peoples R China
[2] Inst Ecochongming, Shanghai 202162, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Mech Engn, Key Lab Power Machinery & Engn, Minist Educ,Res Ctr Renewable Synthet Fuel, Shanghai 200240, Peoples R China
[4] Chinese Acad Sci, Inst Chem, CAS Res Educ Ctr Excellence Mol Sci,CAS Key Lab Co, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
RU SINGLE ATOMS; NANOPARTICLES; METHANATION; MN3O4; ADSORPTION; SPILLOVER; CATALYST;
D O I
10.1038/s41467-024-45389-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Upcycling of CO2 into fuels by virtually unlimited solar energy provides an ultimate solution for addressing the substantial challenges of energy crisis and climate change. In this work, we report an efficient nanostructured Ru/MnOx catalyst composed of well-defined Ru/MnO/Mn3O4 for photo-thermal catalytic CO2 hydrogenation to CH4, which is the result of a combination of external heating and irradiation. Remarkably, under relatively mild conditions of 200 degrees C, a considerable CH4 production rate of 166.7 mmol g(-1) h(-1) was achieved with a superior selectivity of 99.5% at CO2 conversion of 66.8%. The correlative spectroscopic and theoretical investigations suggest that the yield of CH4 is enhanced by coordinating photon energy with thermal energy to reduce the activation energy of reaction and promote formation of key intermediate COOH* species over the catalyst. This work opens up a new strategy for CO2 hydrogenation toward CH4.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] KINETICS OF FORMATION OF MNSO4 FROM MNO2 MN2O3 AND MN3O4 AND ITS DECOMPOSITION TO MN2O3 OR MN3O4
    INGRAHAM, TR
    MARIER, P
    JOURNAL OF METALS, 1968, 20 (01): : A178 - &
  • [22] The interation between CO2 and CH4 on Ru-Co-catalysts
    Shapovalova, LB
    Zakumbaeva, GD
    Shlygina, IA
    Shyrtbaeva, AA
    CARBON DIOXIDE UTILIZATION FOR GLOBAL SUSTAINABILITY, 2004, 153 : 153 - 156
  • [23] HYDROGENATION OF CO2 TO CH4 OVER ALUMINA-SUPPORTED NOBLE-METALS
    SOLYMOSI, F
    ERDOHELYI, A
    JOURNAL OF MOLECULAR CATALYSIS, 1980, 8 (04): : 471 - 474
  • [24] Thermodynamic Data for Mn3O4, Mn2O3 and MnO2
    Jacob, K. T.
    Kumar, A.
    Rajitha, G.
    Waseda, Y.
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 2011, 30 (4-5) : 459 - 472
  • [25] REACTIONS OF O2+.O2 WITH CO2, O3 AND CH4 AND O2+.O3 WITH CH4 AND H2O
    DOTAN, I
    FEHSENFELD, FC
    ALBRITTON, DL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (02): : 156 - 157
  • [26] Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate
    Zhang, Lunxiang
    Yang, Lei
    Wang, Jiaqi
    Zhao, Jiafei
    Dong, Hongsheng
    Yang, Mingjun
    Liu, Yu
    Song, Yongchen
    CHEMICAL ENGINEERING JOURNAL, 2017, 308 : 40 - 49
  • [27] THERMAL-DECOMPOSITION OF MN2O3 AND REDUCTION OF MN3O4 BY C AND CO
    KOR, GJW
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1978, 9 (02): : 307 - 311
  • [28] Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate
    Jankovsky, Ondrej
    Sedmidubsky, David
    Simek, Petr
    Sofer, Zdenek
    Ulbrich, Pavel
    Bartunek, Vilem
    CERAMICS INTERNATIONAL, 2015, 41 (01) : 595 - 601
  • [29] Thermal desorption of CH4 retained in CO2 ice
    Ramón Luna
    Carlos Millán
    Manuel Domingo
    Miguel Ángel Satorre
    Astrophysics and Space Science, 2008, 314 : 113 - 119
  • [30] CO2 reforming of CH4 by binode thermal plasma
    Tao, Xumei
    Bai, Meigui
    Wu, Qingyou
    Huang, Zhijun
    Yin, Yongxiang
    Dai, Xiaoyan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (23) : 9373 - 9378