Deep learning predicts patients outcome and mutations from digitized histology slides in gastrointestinal stromal tumor

被引:4
|
作者
Fu, Yu [1 ]
Karanian, Marie [2 ]
Perret, Raul [3 ]
Camara, Axel [1 ]
Le Loarer, Francois [3 ,4 ]
Jean-Denis, Myriam [2 ]
Hostein, Isabelle [3 ]
Michot, Audrey [5 ]
Ducimetiere, Francoise [2 ]
Giraud, Antoine [6 ]
Courreges, Jean-Baptiste [6 ]
Courtet, Kevin [3 ]
Laizet, Yech'an [3 ]
Bendjebbar, Etienne [1 ]
Du Terrail, Jean Ogier [1 ]
Schmauch, Benoit [1 ]
Maussion, Charles [1 ]
Blay, Jean-Yves [2 ]
Italiano, Antoine [4 ,7 ]
Coindre, Jean-Michel [3 ,4 ]
机构
[1] Owkin Inc, New York, NY 10003 USA
[2] Ctr Leon Berard, Canc Res Ctr Lyon, Lyon, France
[3] Inst Bergonie, Dept Biopathol, Bordeaux, France
[4] Univ Bordeaux, Fac Med, Bordeaux, France
[5] Inst Bergonie, Dept Surg Oncol, Bordeaux, France
[6] Inst Bergonie, Clin Res & Clin Epidemiol Unit, Bordeaux, France
[7] Inst Bergonie, Dept Med, Bordeaux, France
关键词
C-KIT; IMATINIB; EFFICACY; MESYLATE; SAFETY; ORIGIN;
D O I
10.1038/s41698-023-00421-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Risk assessment of gastrointestinal stromal tumor (GIST) according to the AFIP/Miettinen classification and mutational profiling are major tools for patient management. However, the AFIP/Miettinen classification depends heavily on mitotic counts, which is laborious and sometimes inconsistent between pathologists. It has also been shown to be imperfect in stratifying patients. Molecular testing is costly and time-consuming, therefore, not systematically performed in all countries. New methods to improve risk and molecular predictions are hence crucial to improve the tailoring of adjuvant therapy. We have built deep learning (DL) models on digitized HES-stained whole slide images (WSI) to predict patients' outcome and mutations. Models were trained with a cohort of 1233 GIST and validated on an independent cohort of 286 GIST. DL models yielded comparable results to the Miettinen classification for relapse-free-survival prediction in localized GIST without adjuvant Imatinib (C-index=0.83 in cross-validation and 0.72 for independent testing). DL splitted Miettinen intermediate risk GIST into high/low-risk groups (p value = 0.002 in the training set and p value = 0.29 in the testing set). DL models achieved an area under the receiver operating characteristic curve (AUC) of 0.81, 0.91, and 0.71 for predicting mutations in KIT, PDGFRA and wild type, respectively, in cross-validation and 0.76, 0.90, and 0.55 in independent testing. Notably, PDGFRA exon18 D842V mutation, which is resistant to Imatinib, was predicted with an AUC of 0.87 and 0.90 in cross-validation and independent testing, respectively. Additionally, novel histological criteria predictive of patients' outcome and mutations were identified by reviewing the tiles selected by the models. As a proof of concept, our study showed the possibility of implementing DL with digitized WSI and may represent a reproducible way to improve tailoring therapy and precision medicine for patients with GIST.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review
    Kuntz, Sara
    Krieghoff-Henning, Eva
    Kather, Jakob N.
    Jutzi, Tanja
    Hohn, Julia
    Kiehl, Lennard
    Hekler, Achim
    Alwers, Elizabeth
    von Kalle, Christof
    Frohling, Stefan
    Utikal, Jochen S.
    Brenner, Hermann
    Hoffmeister, Michael
    Brinker, Titus J.
    EUROPEAN JOURNAL OF CANCER, 2021, 155 : 200 - 215
  • [32] Distinguishing lipomas from atypical lipomatous tumors/ well differentiated liposarcomas in histology slides using deep learning
    Karanian, M.
    Camara, A.
    Klein, J.
    Marchand, T.
    Maussion, C.
    Rousseau, V.
    Bonnotte, T.
    Perret, R.
    Le Loarer, F.
    Ngo, C.
    Korbi, S.
    Mansour, Y.
    Meurgey, A.
    Jean-Denis, M.
    Italiano, A.
    Blay, J-Y.
    Coindre, J. M.
    ANNALS OF ONCOLOGY, 2023, 34 : S1047 - S1047
  • [33] Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer
    Jakob Nikolas Kather
    Alexander T. Pearson
    Niels Halama
    Dirk Jäger
    Jeremias Krause
    Sven H. Loosen
    Alexander Marx
    Peter Boor
    Frank Tacke
    Ulf Peter Neumann
    Heike I. Grabsch
    Takaki Yoshikawa
    Hermann Brenner
    Jenny Chang-Claude
    Michael Hoffmeister
    Christian Trautwein
    Tom Luedde
    Nature Medicine, 2019, 25 : 1054 - 1056
  • [34] Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer
    Kather, Jakob Nikolas
    Pearson, Alexander T.
    Halama, Niels
    Jaeger, Dirk
    Krause, Jeremias
    Loosen, Sven H.
    Marx, Alexander
    Boor, Peter
    Tacke, Frank
    Neumann, Ulf Peter
    Grabsch, Heike I.
    Yoshikawa, Takaki
    Brenner, Hermann
    Chang-Claude, Jenny
    Hoffmeister, Michael
    Trautwein, Christian
    Luedde, Tom
    NATURE MEDICINE, 2019, 25 (07) : 1054 - +
  • [35] Deep learning from HE slides predicts the clinical benefit from adjuvant chemotherapy in hormone receptor-positive breast cancer patients
    Cho, Soo Youn
    Lee, Jeong Hoon
    Ryu, Jai Min
    Lee, Jeong Eon
    Cho, Eun Yoon
    Ahn, Chang Ho
    Paeng, Kyunghyun
    Yoo, Inwan
    Ock, Chan-Young
    Song, Sang Yong
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [36] Imatinib adherence prediction using machine learning approach in patients with gastrointestinal stromal tumor
    Liu, Li
    Yu, Ze
    Chen, Hefen
    Gong, Zhujun
    Huang, Xiao
    Chen, Linhua
    Fan, Ziying
    Zhang, Jinyuan
    Yan, Jiannan
    Tian, Hongkun
    Zeng, Xiangyu
    Chen, Zhiliang
    Zhang, Peng
    Zhou, Hong
    CANCER, 2024,
  • [37] Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer
    Fengling Li
    Yongquan Yang
    Yani Wei
    Yuanyuan Zhao
    Jing Fu
    Xiuli Xiao
    Zhongxi Zheng
    Hong Bu
    npj Breast Cancer, 8
  • [38] Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer
    Li, Fengling
    Yang, Yongquan
    Wei, Yani
    Zhao, Yuanyuan
    Fu, Jing
    Xiao, Xiuli
    Zheng, Zhongxi
    Bu, Hong
    NPJ BREAST CANCER, 2022, 8 (01)
  • [39] A nonrandom association of gastrointestinal stromal tumor (GIST) and desmoid tumor (deep fibromatosis): case series of 28 patients
    Dumont, A. G.
    Rink, L.
    Godwin, A. K.
    Miettinen, M.
    Joensuu, H.
    Strosberg, J. R.
    Gronchi, A.
    Corless, C. L.
    Goldstein, D.
    Rubin, B. P.
    Maki, R. G.
    Lazar, A. J.
    Lev, D.
    Trent, J. C.
    von Mehren, M.
    ANNALS OF ONCOLOGY, 2012, 23 (05) : 1335 - 1340
  • [40] Kinase Mutations and Imatinib Response in Patients With Metastatic Gastrointestinal Stromal Tumor (Reprinted from vol 21, pg 4342, 2003)
    Heinrich, Michael C.
    Corless, Christopher L.
    Demetri, George D.
    Blanke, Charles D.
    von Mehren, Margaret
    Joensuu, Heikki
    Mcgreevey, Laura S.
    Chen, Chang-Jie
    van den Abbeele, Annick D.
    Druker, Brian J.
    Kiese, Beate
    Eisenberg, Burton
    Roberts, Peter J.
    Singer, Samuel
    Fletcher, Christopher D. M.
    Silberman, Sandra
    Dimitrijevic, Sasa
    Fletcher, Jonathan A.
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (31) : 4829 - 4836