A SAV finite element method for the Cahn-Hilliard equation with dynamic boundary conditions

被引:0
|
作者
Li, Na [1 ,2 ]
Lin, Ping [3 ]
Gao, Fuzheng [4 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing, Peoples R China
[2] Shandong Womens Univ, Sch Data Sci & Comp, Jinan, Peoples R China
[3] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[4] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Cahn-Hilliard equation; Dynamic boundary condition; SAV method; Energy law preservation; Finite element method; THIN-FILM MODEL; VARIATIONAL APPROACH; NONUNIFORM SYSTEM; NUMERICAL-METHOD; ERROR ANALYSIS; FREE-ENERGY; 2ND-ORDER; SCHEME; FLOWS; CONVERGENCE;
D O I
10.1016/j.cam.2023.115584
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a SAV method for the Cahn-Hilliard type phase field model with new dynamic boundary conditions. By using the continuous finite element method in space and the backward difference method in time, the fully discrete numerical schemes preserving the energy law are constructed. Numerical examples show that the proposed scheme can simulate the phase field model well even in a relatively rough grid.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Xiaobing Feng
    Andreas Prohl
    [J]. Numerische Mathematik, 2004, 99 : 47 - 84
  • [22] Error analysis of a mixed finite element method for the Cahn-Hilliard equation
    Feng, XB
    Prohl, A
    [J]. NUMERISCHE MATHEMATIK, 2004, 99 (01) : 47 - 84
  • [23] A multigrid finite element solver for the Cahn-Hilliard equation
    Kay, D
    Welford, R
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 288 - 304
  • [24] Finite element approximation of the Cahn-Hilliard equation on surfaces
    Du, Qiang
    Ju, Lili
    Tian, Li
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (29-32) : 2458 - 2470
  • [25] Dissipation-preserving discretization of the Cahn-Hilliard equation with dynamic boundary conditions
    Altmann, R.
    Zimmer, C.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 190 : 254 - 269
  • [26] On a Cahn-Hilliard system with convection and dynamic boundary conditions
    Colli, Pierluigi
    Gilardi, Gianni
    Sprekels, Juergen
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (05) : 1445 - 1475
  • [27] NUMERICAL APPROXIMATIONS AND ERROR ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY CONDITIONS
    Bao, Xuelian
    Zhang, Hui
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (03) : 663 - 685
  • [28] High Order Finite Element Calculations for the Cahn-Hilliard Equation
    Goudenege, Ludovic
    Martin, Daniel
    Vial, Gregory
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (02) : 294 - 321
  • [29] Cahn-Hilliard equations with memory and dynamic boundary conditions
    Cavaterra, Cecilia
    Gal, Ciprian G.
    Grasselli, Maurizio
    [J]. ASYMPTOTIC ANALYSIS, 2011, 71 (03) : 123 - 162
  • [30] A WEAK GALERKIN FINITE ELEMENT SCHEME FOR THE CAHN-HILLIARD EQUATION
    Wang, Junping
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    [J]. MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 211 - 235