Artificial Intelligence in Acute Ischemic Stroke Subtypes According to Toast Classification: A Comprehensive Narrative Review

被引:19
|
作者
Miceli, Giuseppe [1 ,2 ]
Basso, Maria Grazia [1 ,2 ]
Rizzo, Giuliana [1 ,2 ]
Pintus, Chiara [1 ,2 ]
Cocciola, Elena [1 ,2 ]
Pennacchio, Andrea Roberta [1 ,2 ]
Tuttolomondo, Antonino [1 ,2 ]
机构
[1] Univ Palermo, Dept Hlth Promot Mother & Child Care, Internal Med & Med Specialties ProMISE, Piazza Clin 2, I-90127 Palermo, Italy
[2] Univ Hosp Policlin P Giaccone, Internal Med & Stroke Care Ward, I-90141 Palermo, Italy
关键词
artificial intelligence; ischemic stroke; machine learning; deep learning; toast classification; MIDDLE CEREBRAL-ARTERY; SMALL VESSEL DISEASE; CONVOLUTIONAL NEURAL-NETWORK; ENLARGED PERIVASCULAR SPACES; WHITE-MATTER HYPERINTENSITY; MCA DOT SIGN; ATRIAL-FIBRILLATION; MACHINE; DIAGNOSIS; CT;
D O I
10.3390/biomedicines11041138
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The correct recognition of the etiology of ischemic stroke (IS) allows tempestive interventions in therapy with the aim of treating the cause and preventing a new cerebral ischemic event. Nevertheless, the identification of the cause is often challenging and is based on clinical features and data obtained by imaging techniques and other diagnostic exams. TOAST classification system describes the different etiologies of ischemic stroke and includes five subtypes: LAAS (large-artery atherosclerosis), CEI (cardio embolism), SVD (small vessel disease), ODE (stroke of other determined etiology), and UDE (stroke of undetermined etiology). AI models, providing computational methodologies for quantitative and objective evaluations, seem to increase the sensitivity of main IS causes, such as tomographic diagnosis of carotid stenosis, electrocardiographic recognition of atrial fibrillation, and identification of small vessel disease in magnetic resonance images. The aim of this review is to provide overall knowledge about the most effective AI models used in the differential diagnosis of ischemic stroke etiology according to the TOAST classification. According to our results, AI has proven to be a useful tool for identifying predictive factors capable of subtyping acute stroke patients in large heterogeneous populations and, in particular, clarifying the etiology of UDE IS especially detecting cardioembolic sources.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application
    Saba, Luca
    Sanagala, Skandha S.
    Gupta, Suneet K.
    Koppula, Vijaya K.
    Johri, Amer M.
    Khanna, Narendra N.
    Mavrogeni, Sophie
    Laird, John R.
    Pareek, Gyan
    Miner, Martin
    Sfikakis, Petros P.
    Protogerou, Athanasios
    Misra, Durga P.
    Agarwal, Vikas
    Sharma, Aditya M.
    Viswanathan, Vijay
    Rathore, Vijay S.
    Turk, Monika
    Kolluri, Raghu
    Viskovic, Klaudija
    Cuadrado-Godia, Elisa
    Kitas, George D.
    Sharma, Neeraj
    Nicolaides, Andrew
    Suri, Jasjit S.
    ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (14)
  • [42] Comprehensive Review of Tenecteplase for Thrombolysis in Acute Ischemic Stroke
    Wang, Liyuan
    Hao, Manjun
    Wu, Na
    Wu, Shuangzhe
    Fisher, Marc
    Xiong, Yunyun
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (09):
  • [43] Classification of Subtypes of Ischemic Stroke History of the Trial of Org 10 172 in Acute Stroke Treatment Classification
    Adams, Harold P., Jr.
    Biller, Jose
    STROKE, 2015, 46 (05) : E114 - E117
  • [44] Artificial intelligence in cerebral stroke images classification and segmentation: A comprehensive study
    Gourav Kumar Sharma
    Santosh Kumar
    Virender Ranga
    Mahendra Kumar Murmu
    Multimedia Tools and Applications, 2024, 83 : 43539 - 43575
  • [45] Artificial intelligence in cerebral stroke images classification and segmentation: A comprehensive study
    Sharma, Gourav Kumar
    Kumar, Santosh
    Ranga, Virender
    Murmu, Mahendra Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 43539 - 43575
  • [46] Is the TOAST Classification Suitable for Use in Personalized Medicine in Ischemic Stroke?
    Simonsen, Sofie A.
    West, Anders S.
    Heiberg, Adam, V
    Wolfram, Frauke
    Jennum, Poul J.
    Iversen, Helle K.
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03):
  • [47] Multiple chronic lacunes predicting early neurological deterioration and long-term functional outcomes according to TOAST classification in acute ischemic stroke
    Lee, Hyuk-Je
    Kim, Taewon
    Koo, Jaseong
    Kim, Young-Do
    Na, Seunghee
    Choi, Yun Ho
    Song, In-Uk
    Chung, Sung-Woo
    NEUROLOGICAL SCIENCES, 2023, 44 (02) : 611 - 619
  • [48] Inflammatory and metabolic markers and short-time outcome in patients with acute ischemic stroke in relation to TOAST subtypes
    Lehmann, Marcio Francisco
    Kallaur, Ana Paula
    Oliveira, Sayonara Rangel
    Alfieri, Daniela Frizon
    Delongui, Franciele
    Parreira, Johnathan de Sousa
    Martins de Araujo, Maria Caroline
    Rossato, Carolina
    de Almeida, Jessica Tavares
    Pelegrino, Larissa Moliterno
    Bragato, Erick Frank
    Fuestenberger Lehmann, Ana Lucia Cruz
    Morimoto, Helena Kaminami
    Batisti Lozovoy, Marcell Alysson
    Colado Simo, Andrea Name
    Kaimen-Maciel, Damacio Ramon
    Vissoci Reiche, Edna Maria
    METABOLIC BRAIN DISEASE, 2015, 30 (06) : 1417 - 1428
  • [49] Artificial intelligence in the diagnosis and treatment of acute appendicitis: a narrative review
    Bianchi, Valentina
    Giambusso, Mauro
    De Iacob, Alessandra
    Chiarello, Maria Michela
    Brisinda, Giuseppe
    UPDATES IN SURGERY, 2024, 76 (03) : 783 - 792
  • [50] Multiple chronic lacunes predicting early neurological deterioration and long-term functional outcomes according to TOAST classification in acute ischemic stroke
    Hyuk-je Lee
    Taewon Kim
    Jaseong Koo
    Young-Do Kim
    Seunghee Na
    Yun Ho Choi
    In-Uk Song
    Sung-Woo Chung
    Neurological Sciences, 2023, 44 : 611 - 619