Enriched lower separation axioms and the principle of enriched continuous extension 

被引:1
|
作者
Arrieta, Igor [1 ,2 ]
Gutierrez Garcia, Javier [2 ]
Hoehle, Ulrich [3 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, England
[2] Univ Pais Vasco UPV EHU, Dept Matemat, Bilbao 48080, Spain
[3] Berg Univ Wuppertal, Inst Mat Wissensch, D-42097 Wuppertal, Germany
关键词
Unital quantale; Modules in Sup; Quantale-enriched topological space; Closed presheaves; Lower separation axioms; Convergence of quantale-enriched filters; Extension by quantale-enriched continuity;
D O I
10.1016/j.fss.2023.108633
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a version of the lower separation axioms and the principle of enriched continuous extension for quantaleenriched topological spaces. As a remarkable result, among other things, we point out that in the case of commutative Girard quantales the principle of continuous extension holds for projective modules in Sup. & COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:29
相关论文
共 50 条