Location of Small Points on an Elliptic Curve by an Equidistribution Argument

被引:1
|
作者
Plessis, Arnaud [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
关键词
CANONICAL HEIGHT; CONJECTURE;
D O I
10.1093/imrn/rnad051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve defined over a number field K without complex multiplication. If Gamma subset of E ((K) over bar is a subgroup of finite rank, a very special case of a conjecture of Remond predicts that points of small height in E(K(Gamma)) lie in the division group of Gamma. Using an equidistribution argument, we will show that this conjecture is true for groups of rank arbitarily large.
引用
收藏
页码:4689 / 4709
页数:21
相关论文
共 50 条
  • [21] An elliptic curve having large integral points
    He, Yanfeng
    Zhang, Wenpeng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1101 - 1107
  • [22] Linear forms of algebraic points on an elliptic curve
    Ably, M
    ANNALES DE L INSTITUT FOURIER, 2000, 50 (01) : 1 - +
  • [23] On the prime divisors of the number of points on an elliptic curve
    Hall, Chris
    Perucca, Antonella
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (1-2) : 1 - 3
  • [24] New schemes for sharing points on an elliptic curve
    Liu, Duo
    Huang, Dongping
    Luo, Ping
    Dai, Yiqi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (06) : 1556 - 1561
  • [25] On the number of rational torsion points on an elliptic curve
    Hindry, M
    Silverman, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (02): : 97 - 100
  • [26] Elliptic curve torsion points and division polynomials
    Burhanuddin, IA
    Huang, MDA
    Computational Aspects of Algebraic Curves, 2005, 13 : 13 - 37
  • [27] The equidistribution of small points for strongly regular pairs of polynomial maps
    Lee, Chong Gyu
    MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (3-4) : 1047 - 1072
  • [28] The equidistribution of small points for strongly regular pairs of polynomial maps
    Chong Gyu Lee
    Mathematische Zeitschrift, 2013, 275 : 1047 - 1072
  • [29] Equidistribution of Hecke points
    Clozel, L
    Ullmo, E
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 193 - 254
  • [30] On the equidistribution of Hecke points
    Goldstein, D
    Mayer, A
    FORUM MATHEMATICUM, 2003, 15 (02) : 165 - 189