Location of Small Points on an Elliptic Curve by an Equidistribution Argument

被引:1
|
作者
Plessis, Arnaud [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
关键词
CANONICAL HEIGHT; CONJECTURE;
D O I
10.1093/imrn/rnad051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve defined over a number field K without complex multiplication. If Gamma subset of E ((K) over bar is a subgroup of finite rank, a very special case of a conjecture of Remond predicts that points of small height in E(K(Gamma)) lie in the division group of Gamma. Using an equidistribution argument, we will show that this conjecture is true for groups of rank arbitarily large.
引用
收藏
页码:4689 / 4709
页数:21
相关论文
共 50 条