Spatial-Temporal Graph Sandwich Transformer for Traffic Flow Forecasting

被引:0
|
作者
Fan, Yujie [1 ]
Yeh, Chin-Chia Michael [1 ]
Chen, Huiyuan [1 ]
Wang, Liang [1 ]
Zhuang, Zhongfang [1 ]
Wang, Junpeng [1 ]
Dai, Xin [1 ]
Zheng, Yan [1 ]
Zhang, Wei [1 ]
机构
[1] Visa Res, Palo Alto, CA 94304 USA
关键词
Spatial-temporal graph; Transformer; Traffic forecasting; NETWORKS;
D O I
10.1007/978-3-031-43430-3_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting has primarily relied on the spatial-temporal models. However, yielding accurate traffic prediction is still challenging due to that the dynamic temporal pattern, intricate spatial dependency and their affluent interaction are difficult to depict. Existing models are often restricted since they can only capture limited-range temporal dependency, shallow spatial dependency, or faint spatial-temporal interaction. In this work, to overcome these limitations, we propose a novel spatial-temporal graph sandwich Transformer (STGST) for traffic flow forecasting. In STGST, we design two temporal Transformers equipped with time encoding and a spatial Transformer equipped with structure and spatial encoding to characterize long-range temporal and deep spatial dependencies, respectively. These two types of Transformers are further structured in a sandwich manner with two temporal Transformers as buns and a spatial Transformer as sliced meat to capture prosperous spatial-temporal interactions. We also assemble a set of such sandwich Transformers together to strengthen the correlations between spatial and temporal domains. Extensive experimental studies are performed on public traffic benchmarks. Promising results demonstrate that the proposed STGST outperforms state-of-the-art baselines.
引用
收藏
页码:210 / 225
页数:16
相关论文
共 50 条
  • [21] Orthogonal Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Fei, Yanhong
    Hu, Ming
    Wei, Xian
    Chen, Mingsong
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 71 - 76
  • [22] Forecasting traffic flow with spatial-temporal convolutional graph attention networks
    Zhang, Xiyue
    Xu, Yong
    Shao, Yizhen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15457 - 15479
  • [23] A Lightweight and Accurate Spatial-Temporal Transformer for Traffic Forecasting
    Li, Guanyao
    Zhong, Shuhan
    Deng, Xingdong
    Xiang, Letian
    Chan, S. -H. Gary
    Li, Ruiyuan
    Liu, Yang
    Zhang, Ming
    Hung, Chih-Chieh
    Peng, Wen-Chih
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 10967 - 10980
  • [24] Graph Spatial-Temporal Transformer Network for Traffic Prediction
    Zhao, Zhenzhen
    Shen, Guojiang
    Wang, Lei
    Kong, Xiangjie
    BIG DATA RESEARCH, 2024, 36
  • [25] A multi-channel spatial-temporal transformer model for traffic flow forecasting
    Xiao, Jianli
    Long, Baichao
    INFORMATION SCIENCES, 2024, 671
  • [26] STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting
    Liu, Jiansong
    Kang, Yan
    Li, Hao
    Wang, Haining
    Yang, Xuekun
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12472 - 12488
  • [27] uTransformer: unified spatial-temporal transformer with external factors for traffic flow forecasting
    Li, Junyan
    Dong, Wenyong
    Gui, Xuewen
    Journal of Supercomputing, 2025, 81 (01):
  • [28] MVSTT: A Multiview Spatial-Temporal Transformer Network for Traffic-Flow Forecasting
    Pu, Bin
    Liu, Jiansong
    Kang, Yan
    Chen, Jianguo
    Yu, Philip S.
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1582 - 1595
  • [29] STGHTN: Spatial-temporal gated hybrid transformer network for traffic flow forecasting
    Jiansong Liu
    Yan Kang
    Hao Li
    Haining Wang
    Xuekun Yang
    Applied Intelligence, 2023, 53 : 12472 - 12488
  • [30] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003