Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via Uqsl2 Symmetry

被引:3
|
作者
Chernyak, Dmitry [1 ,2 ]
Gainutdinov, Azat M. [3 ]
Jacobsen, Jesper Lykke [1 ,2 ,4 ]
Saleur, Hubert [2 ,5 ]
机构
[1] Univ PSL, Sorbonne Univ, Univ Paris, Lab Phys,Ecole Normale Super,ENS,CNRS, F-75005 Paris, France
[2] Inst Phys Theor, Paris Saclay, CEA, CNRS, F-91191 Gif Sur Yvette, France
[3] Univ Tours, Inst Denis Poisson, CNRS, Parc Grandmont, F-37200 Tours, France
[4] Sorbonne Univ, Ecole Normale Super, CNRS, Lab Phys LPENS, F-75005 Paris, France
[5] USC Phys & Astron Dept, Los Angeles, CA 90089 USA
关键词
quantum integrable models; non-diagonal K-matrices; Verma modules; Temper-ley-Lieb algebras; K-MATRICES; MODEL; SEGMENT; EQUATION; VERTEX; ANALOG; ROOTS;
D O I
10.3842/SIGMA.2023.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive by the traditional algebraic Bethe ansatz method the Bethe equa-tions for the general open XXZ spin chain with non-diagonal boundary terms under the Nepomechie constraint [J. Phys. A 37 (2004), 433-440, arXiv:hep-th/0304092]. The tech-nical difficulties due to the breaking of U(1) symmetry and the absence of a reference state are overcome by an algebraic construction where the two-boundary Temp erley-Lieb Hamiltonian is realised in a new Uqsl2-invariant spin chain involving infinite-dimensional Verma modules on the edges [J. High Energy Phys. 2022 (2022), no. 11, 016, 64 pages, arXiv:2207.12772]. The equivalence of the two Hamiltonians is established by proving Schur- Weyl duality between Uqsl2 and the two-boundary Temp erley-Lieb algebra. In this frame-work, the Nepomechie condition turns out to have a simple algebraic interpretation in terms of quantum group fusion rules.
引用
收藏
页数:47
相关论文
共 50 条
  • [21] The nested Bethe ansatz for 'all' open spin chains with diagonal boundary conditions
    Belliard, S.
    Ragoucy, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (20)
  • [22] Eigenvectors of open XXZ and ASEP models for a class of non-diagonal boundary conditions
    Crampe, N.
    Ragoucy, E.
    Simon, D.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [23] Exact solution of the alternating XXZ spin chain with generic non-diagonal boundaries
    Cao, Junpeng
    Yang, Wen-Li
    Shi, Kangjie
    Wang, Yupeng
    ANNALS OF PHYSICS, 2015, 361 : 91 - 106
  • [24] Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model
    Manojlovic, N.
    Salom, I.
    NUCLEAR PHYSICS B, 2017, 923 : 73 - 106
  • [25] 'Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms' (vol 37, pg 1945, 2004)
    Nepomechie, RI
    Ravanini, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05): : 1945 - 1946
  • [26] Chiral coordinate Bethe ansatz for phantom eigenstates in the open XXZ spin-1/2 chain
    Zhang, Xin
    Kluemper, Andreas
    Popkov, Vladislav
    PHYSICAL REVIEW B, 2021, 104 (17)
  • [27] Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry
    Links, J
    Foerster, A
    Karowski, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 726 - 735
  • [28] Boundary energy of the open XXX chain with a non-diagonal boundary term
    Nepomechie, Rafael I.
    Wang, Chunguang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (03)
  • [29] Nested Algebraic Bethe Ansatz for Open Spin Chains with Even Twisted Yangian Symmetry
    Gerrard, Allan
    MacKay, Niall
    Regelskis, Vidas
    ANNALES HENRI POINCARE, 2019, 20 (02): : 339 - 392
  • [30] Nested Algebraic Bethe Ansatz for Open Spin Chains with Even Twisted Yangian Symmetry
    Allan Gerrard
    Niall MacKay
    Vidas Regelskis
    Annales Henri Poincaré, 2019, 20 : 339 - 392