spsurvey: Spatial Sampling Design and Analysis in R

被引:14
|
作者
Dumelle, Michael [1 ]
Kincaid, Tom [1 ]
Olsen, Anthony R. [1 ]
Weber, Marc [1 ]
机构
[1] US EPA, 200 SW 35th St, Corvallis, OR 97330 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2023年 / 105卷 / 03期
关键词
design-based inference; generalized random-tessellation stratified algorithm; Horvitz-Thompson; inclusion probability; spatial balance; variance estimation; TREND;
D O I
10.18637/jss.v105.i03
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
spsurvey is an R package for design-based statistical inference, with a focus on spa-tial data. spsurvey provides the generalized random-tessellation stratified (GRTS) algo-rithm to select spatially balanced samples via the grts() function. The grts() function flexibly accommodates several sampling design features, including stratification, vary-ing inclusion probabilities, legacy (or historical) sites, minimum distances between sites, and two options for replacement sites. spsurvey also provides a suite of data analysis options, including categorical variable analysis (cat_analysis()), continuous variable analysis (cont_analysis()), relative risk analysis (relrisk_analysis()), attributable risk analysis (attrisk_analysis()), difference in risk analysis (diffrisk_analysis()), change analysis (change_analysis()), and trend analysis (trend_analysis()). In this manuscript, we first provide background for the GRTS algorithm and the analysis ap-proaches and then show how to implement them in spsurvey. We find that the spatially balanced GRTS algorithm yields more precise parameter estimates than simple random sampling, which ignores spatial information.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [31] LATENT SPATIAL MODELS AND SAMPLING DESIGN FOR LANDSCAPE GENETICS
    Hanks, Ephraim M. u
    Hooten, Mevin B.
    Knick, Steven T.
    Oyler-McCance, Sara J.
    Fike, Jennifer A.
    Cross, Todd B.
    Schwartz, Michael K.
    [J]. ANNALS OF APPLIED STATISTICS, 2016, 10 (02): : 1041 - 1062
  • [33] Design-based spatial sampling: Theory and implementation
    Wang, Jin-Feng
    Jiang, Cheng-Sheng
    Hu, Mao-Gui
    Cao, Zhi-Dong
    Guo, Yan-Sha
    Li, Lian-Fa
    Liu, Tie-Jun
    Meng, Bin
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 40 : 280 - 288
  • [34] Some advances in Bayesian spatial prediction and sampling design
    Pilz, Juergen
    Kazianka, Hannes
    Spoeck, Gunter
    [J]. SPATIAL STATISTICS, 2012, 1 : 65 - 81
  • [35] Spatial sampling design for monitoring the area of cultivated land
    Wang, J
    Liu, J
    Zhuan, D
    Li, L
    Ge, Y
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (02) : 263 - 284
  • [36] Spatial sampling design for sediment quality assessment in estuaries
    Caeiro, S
    Painho, M
    Goovaerts, P
    Costa, H
    Sousa, S
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 853 - 859
  • [37] Bayesian entropy for spatial sampling design of environmental data
    Fuentes, Montserrat
    Chaudhuri, Arin
    Holland, David M.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2007, 14 (03) : 323 - 340
  • [38] A phoswich detector design for improved spatial sampling in PET
    Thiessen, Jonathan D.
    Koschan, Merry A.
    Melcher, Charles L.
    Meng, Fang
    Schellenberg, Graham
    Goertzen, Andrew L.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 882 : 124 - 128
  • [39] Optimal sampling design for spatial capture-recapture
    Dupont, Gates
    Royle, J. Andrew
    Nawaz, Muhammad Ali
    Sutherland, Chris
    [J]. ECOLOGY, 2021, 102 (03)
  • [40] Sparse sampling: Spatial design for monitoring stream networks
    Dobbie, Melissa J.
    Henderson, Brent L.
    Stevens, Don L., Jr.
    [J]. STATISTICS SURVEYS, 2008, 2 : 113 - 153