spsurvey: Spatial Sampling Design and Analysis in R

被引:14
|
作者
Dumelle, Michael [1 ]
Kincaid, Tom [1 ]
Olsen, Anthony R. [1 ]
Weber, Marc [1 ]
机构
[1] US EPA, 200 SW 35th St, Corvallis, OR 97330 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2023年 / 105卷 / 03期
关键词
design-based inference; generalized random-tessellation stratified algorithm; Horvitz-Thompson; inclusion probability; spatial balance; variance estimation; TREND;
D O I
10.18637/jss.v105.i03
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
spsurvey is an R package for design-based statistical inference, with a focus on spa-tial data. spsurvey provides the generalized random-tessellation stratified (GRTS) algo-rithm to select spatially balanced samples via the grts() function. The grts() function flexibly accommodates several sampling design features, including stratification, vary-ing inclusion probabilities, legacy (or historical) sites, minimum distances between sites, and two options for replacement sites. spsurvey also provides a suite of data analysis options, including categorical variable analysis (cat_analysis()), continuous variable analysis (cont_analysis()), relative risk analysis (relrisk_analysis()), attributable risk analysis (attrisk_analysis()), difference in risk analysis (diffrisk_analysis()), change analysis (change_analysis()), and trend analysis (trend_analysis()). In this manuscript, we first provide background for the GRTS algorithm and the analysis ap-proaches and then show how to implement them in spsurvey. We find that the spatially balanced GRTS algorithm yields more precise parameter estimates than simple random sampling, which ignores spatial information.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [1] Spatial and temporal analysis of groundwater recharge with application to sampling design
    Jankovic, I
    Andricevic, R
    [J]. STOCHASTIC HYDROLOGY AND HYDRAULICS, 1996, 10 (01): : 39 - 63
  • [2] The effects of sampling design on spatial structure analysis of contaminated soil
    Wang, XJ
    Qi, F
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 1998, 224 (1-3) : 29 - 41
  • [3] ANALYSIS AND DESIGN OF R-S-S-R SPATIAL LINKAGE
    SCROGGIN, JT
    MORSE, IE
    [J]. MECHANICAL ENGINEERING, 1968, 90 (11): : 66 - &
  • [4] A new sampling design for a spatial population: Path sampling
    Patummasut, Mena
    Dryver, Arthur L.
    [J]. Journal of Applied Sciences, 2012, 12 (13) : 1355 - 1363
  • [5] Generalized approaches to spatial sampling design
    Angulo, JM
    Ruiz-Medina, MD
    Alonso, FJ
    Bueso, MC
    [J]. ENVIRONMETRICS, 2005, 16 (05) : 523 - 534
  • [6] Spatial sampling of MEG and EEG based on generalized spatial-frequency analysis and optimal design
    Iivanainen, Joonas
    Makinen, Antti J.
    Zetter, Rasmus
    Stenroos, Matti
    Ilmoniemi, Risto J.
    Parkkonen, Lauri
    [J]. NEUROIMAGE, 2021, 245
  • [7] SAMPLING DESIGN OPTIMIZATION FOR SPATIAL FUNCTIONS
    OLEA, RA
    [J]. JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1984, 16 (04): : 369 - 392
  • [8] Spatial Sampling Design for Estimating Regional GPP With Spatial Heterogeneities
    Wang, Jianghao
    Ge, Yong
    Heuvelink, Gerard B. M.
    Zhou, Chenghu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (02) : 539 - 543
  • [9] Sampling design and analysis
    Simakani, June Elijah
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 : S756 - S756
  • [10] Design of a spatial sampling scheme considering the spatial autocorrelation of crop acreage included in the sampling units
    Wang Di
    Zhou Qing-bo
    Yang Peng
    Chen Zhong-xin
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (09) : 2096 - 2106