On Spectral Bands of Discrete Periodic Operators

被引:1
|
作者
Filonov, Nikolay [1 ,2 ]
Kachkovskiy, Ilya [3 ]
机构
[1] VA Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[2] St Petersburg State Univ, Univ Skaya Emb 7-9, St Petersburg 199034, Russia
[3] Michigan State Univ, Dept Math, Wells Hall,619 Red Cedar Rd, E Lansing, MI 48910 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-023-04891-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider discrete periodic operator on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}<^>d$$\end{document} with respect to lattices Gamma subset of Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma \subset {\mathbb {Z}}<^>d$$\end{document} of full rank. We describe the class of lattices Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} for which the operator may have a spectral gap for arbitrarily small potentials. We also show that, for a large class of lattices, the dimensions of the level sets of spectral band functions at the band edges do not exceed d-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d-2$$\end{document}.
引用
收藏
页数:17
相关论文
共 50 条