On Spectral Bands of Discrete Periodic Operators

被引:1
|
作者
Filonov, Nikolay [1 ,2 ]
Kachkovskiy, Ilya [3 ]
机构
[1] VA Steklov Math Inst, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[2] St Petersburg State Univ, Univ Skaya Emb 7-9, St Petersburg 199034, Russia
[3] Michigan State Univ, Dept Math, Wells Hall,619 Red Cedar Rd, E Lansing, MI 48910 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-023-04891-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider discrete periodic operator on Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}<^>d$$\end{document} with respect to lattices Gamma subset of Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma \subset {\mathbb {Z}}<^>d$$\end{document} of full rank. We describe the class of lattices Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} for which the operator may have a spectral gap for arbitrarily small potentials. We also show that, for a large class of lattices, the dimensions of the level sets of spectral band functions at the band edges do not exceed d-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d-2$$\end{document}.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On Spectral Bands of Discrete Periodic Operators
    Nikolay Filonov
    Ilya Kachkovskiy
    Communications in Mathematical Physics, 2024, 405
  • [2] SHARP SPECTRAL TRANSITION FOR EIGENVALUES EMBEDDED INTO THE SPECTRAL BANDS OF PERTURBED PERIODIC OPERATORS
    Liu, Wencai
    Ong, Darren C.
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02): : 625 - 661
  • [3] Sharp spectral transition for eigenvalues embedded into the spectral bands of perturbed periodic operators
    Wencai Liu
    Darren C. Ong
    Journal d'Analyse Mathématique, 2020, 141 : 625 - 661
  • [4] SPECTRAL ESTIMATES FOR SCHRODINGER OPERATORS ON PERIODIC DISCRETE GRAPHS
    Korotyaev, E.
    Saburova, N.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2019, 30 (04) : 667 - 698
  • [5] SPECTRAL BAND LOCALIZATION FOR SCHRODINGER OPERATORS ON DISCRETE PERIODIC GRAPHS
    Korotyaev, Evgeny
    Saburova, Natalia
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 3951 - 3967
  • [6] Description of the spectral bands for some 2D periodic Schrodinger operators
    Boumaza, Hakim
    Lafitte, Oliver
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD), 2016, : 79 - 83
  • [7] SPECTRAL ASYMPTOTICS OF PERIODIC DISCRETE SCHRODINGER-OPERATORS .1.
    VANMOUCHE, P
    ASYMPTOTIC ANALYSIS, 1995, 11 (03) : 263 - 287
  • [8] Spectral homogeneity of discrete one-dimensional limit-periodic operators
    Fillman, Jake
    JOURNAL OF SPECTRAL THEORY, 2017, 7 (01) : 201 - 226
  • [9] Critical points of discrete periodic operators
    Faust, Matthew
    Sottile, Frank
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (01) : 1 - 35
  • [10] Schrodinger operators on periodic discrete graphs
    Korotyaev, Evgeny
    Saburova, Natalia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 576 - 611