Restricted Birkhoff Polytopes and Ehrhart Period Collapse

被引:0
|
作者
Alexandersson, Per [1 ]
Hopkins, Sam [2 ]
Zaimi, Gjergji
机构
[1] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
[2] Howard Univ, Dept Math, Washington, DC 20059 USA
关键词
Ehrhart polynomial; Period collapse; Birkhoff polytope; Gelfand-Tsetlin polytope; Order and chain polytopes; RSK correspondence; VOLUME;
D O I
10.1007/s00454-023-00611-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the polytopes obtained from the Birkhoff polytope by imposing additional inequalities restricting the "longest increasing subsequence" have Ehrhart quasi-polynomials which are honest polynomials, even though they are just rational polytopes in general. We do this by defining a continuous, piecewise-linear bijection to a certain Gelfand-Tsetlin polytope. This bijection is not an integral equivalence but it respects lattice points in the appropriate way to imply that the two polytopes have the same Ehrhart (quasi-)polynomials. In fact, the bijection is essentially the Robinson-Schensted-Knuth correspondence.
引用
下载
收藏
页码:62 / 78
页数:17
相关论文
共 50 条
  • [41] Birkhoff Polytopes, Heat Kernels and Graph Complexity
    Escolano, Francisco
    Hancock, Edwin R.
    Lozano, Miguel A.
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2572 - 2576
  • [42] Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley
    Athanasiddis, CA
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 583 : 163 - 174
  • [43] Quasi-period collapse and GLn(Z)-Scissors congruence in rational polytopes
    Haase, Christian
    McAllister, Tyrrell B.
    INTEGER POINTS IN POLYHEDRA - GEOMETRY, NUMBER THEORY, REPRESENTATION THEORY, ALGEBRA, OPTIMIZATION, STATISTICS, 2008, 452 : 115 - +
  • [44] Ehrhart Series of Polytopes Related to Symmetric Doubly-Stochastic
    Davis, Robert
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02):
  • [45] Ehrhart Series of Fractional Stable Set Polytopes of Finite Graphs
    Hamano, Ginji
    Hibi, Takayuki
    Ohsugi, Hidefumi
    ANNALS OF COMBINATORICS, 2018, 22 (03) : 563 - 573
  • [46] EHRHART THEORY FOR LAWRENCE POLYTOPES AND ORBIFOLD COHOMOLOGY OF HYPERTORIC VARIETIES
    Stapledon, Alan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (12) : 4243 - 4253
  • [47] Ehrhart Positivity of Tesler Polytopes and Berline–Vergne’s Valuation
    Yonggyu Lee
    Fu Liu
    Discrete & Computational Geometry, 2023, 69 : 896 - 918
  • [48] THE EQUIVARIANT EHRHART THEORY OF POLYTOPES WITH ORDER-TWO SYMMETRIES
    Clarke, Oliver
    Higashitani, Akihiro
    Kolbl, Max
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (09) : 4027 - 4041
  • [49] Stanley's non-Ehrhart-positive order polytopes
    Liu, Fu
    Tsuchiya, Akiyoshi
    ADVANCES IN APPLIED MATHEMATICS, 2019, 108 : 1 - 10
  • [50] On Lattice Path Matroid Polytopes: Integer Points and Ehrhart Polynomial
    Knauer, Kolja
    Martinez-Sandoval, Leonardo
    Alfonsin, Jorge Luis Ramirez
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (03) : 698 - 719