Learnable Skeleton-Aware 3D Point Cloud Sampling

被引:7
|
作者
Wen, Cheng [1 ]
Yu, Baosheng [1 ]
Tao, Dacheng [1 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, NSW 2008, Australia
基金
澳大利亚研究理事会;
关键词
ADAPTIVE SIMPLIFICATION; AXIS;
D O I
10.1109/CVPR52729.2023.01695
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point cloud sampling is crucial for efficient large-scale point cloud analysis, where learning-to-sample methods have recently received increasing attention from the community for jointly training with downstream tasks. However, the above-mentioned task-specific sampling methods usually fail to explore the geometries of objects in an explicit manner. In this paper, we introduce a new skeleton-aware learning-to-sample method by learning object skeletons as the prior knowledge to preserve the object geometry and topology information during sampling. Specifically, without labor-intensive annotations per object category, we first learn category-agnostic object skeletons via the medial axis transform definition in an unsupervised manner. With object skeleton, we then evaluate the histogram of the local feature size as the prior knowledge to formulate skeleton-aware sampling from a probabilistic perspective. Additionally, the proposed skeleton-aware sampling pipeline with the task network is thus end-to-end trainable by exploring the reparameterization trick. Extensive experiments on three popular downstream tasks, point cloud classification, retrieval, and reconstruction, demonstrate the effectiveness of the proposed method for efficient point cloud analysis.
引用
收藏
页码:17671 / 17681
页数:11
相关论文
共 50 条
  • [41] Point Cloud Processing Methods for 3D Point Cloud Detection Tasks
    WANG Chongchong
    LI Yao
    WANG Beibei
    CAO Hong
    ZHANG Yanyong
    [J]. ZTE Communications, 2023, 21 (04) : 38 - 46
  • [42] Guided 3D point cloud filtering
    Han, Xian-Feng
    Jin, Jesse S.
    Wang, Ming-Jie
    Jiang, Wei
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (13) : 17397 - 17411
  • [43] Geometric 3D point cloud compression
    Morell, Vicente
    Orts, Sergio
    Cazorla, Miguel
    Garcia-Rodriguez, Jose
    [J]. PATTERN RECOGNITION LETTERS, 2014, 50 : 55 - 62
  • [44] 3D Point Cloud Segmentation: A survey
    Anh Nguyen
    Le, Bac
    [J]. PROCEEDINGS OF THE 2013 6TH IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), 2013, : 225 - 230
  • [45] A 3D Point Cloud Reconstruction Method
    Zhang, Yang
    Jia, Tong
    Chen, Yanqi
    Tan, Zexun
    [J]. 2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1310 - 1315
  • [46] Leaves Segmentation in 3D Point Cloud
    Gelard, William
    Herbulot, Ariane
    Devy, Michel
    Debaeke, Philippe
    McCormick, Ryan F.
    Truong, Sandra K.
    Mullet, John
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 664 - 674
  • [47] Representing 3D Point Cloud Data
    Poux, Florent
    [J]. GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2022, 36 (04): : 36 - +
  • [48] Guided 3D point cloud filtering
    Xian-Feng Han
    Jesse S. Jin
    Ming-Jie Wang
    Wei Jiang
    [J]. Multimedia Tools and Applications, 2018, 77 : 17397 - 17411
  • [49] 3D Point Cloud Compression: A Survey
    Cao, Chao
    Preda, Marius
    Zaharia, Titus
    [J]. PROCEEDINGS WEB3D 2019: THE 24TH INTERNATIONAL ACM CONFERENCE ON 3D WEB TECHNOLOGY, 2019,
  • [50] Algorithm for 3D Point Cloud Denoising
    Huang Wenming
    Li Yuanwang
    Wen Peizhi
    Wu Xiaojun
    [J]. THIRD INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING, 2009, : 574 - +