Linear B-spline finite element Method for solving delay reaction diffusion equation

被引:2
|
作者
Lubo, Gemeda Tolessa [1 ]
Duressa, Gemechis File [2 ]
机构
[1] Wollega Univ, Dept Math, Nekemte, Ethiopia
[2] Jimma Univ, Dept Math, Jimma, Ethiopia
来源
关键词
Delay reaction diffusion equation; Crank Nicolson; Linear B-spline; Finite element method; Asymtotic stability; Convergence; WAVE-FORM RELAXATION; COMPACT DIFFERENCE SCHEME; NUMERICAL-SOLUTION; ASYMPTOTIC STABILITY; PARABOLIC EQUATIONS; BURGERS-EQUATION; COLLOCATION; CONVERGENCE;
D O I
10.22034/cmde.2022.49678.2066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the numerical treatment of delay reaction-diffusion with the Dirichlet boundary condition. The finite element method with linear B-spline basis functions is utilized to discretize the space variable. The Crank-Nicolson method is used for the processes of time discretization. Sufficient and necessary conditions for the numerical method to be asymptotically stable are investigated. The convergence of the numerical method is studied. Some numerical experiments are performed to verify the applicability of the numerical method.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 50 条
  • [41] Solving Dym Equation using Quartic B-spline and Quartic Trigonometric B-spline Collocation Methods
    Anuar, Hanis Safirah Saiful
    Mafazi, Nur Hidayah
    Abd Hamid, Nur Nadiah
    Abd Majid, Ahmad
    Azmi, Amirah
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [42] Immersed b-spline (i-spline) finite element method for geometrically complex domains
    Sanches, R. A. K.
    Bornemann, P. B.
    Cirak, F.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (13-16) : 1432 - 1445
  • [43] Finite Element Method for Solving the Advection-Diffusion Equation
    Amali, Onjefu
    Agwu, Nwojo N.
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO), 2017,
  • [44] A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations
    Esen, A.
    Tasbozan, O.
    Ucar, Y.
    Yagmurlu, N. M.
    [J]. TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 181 - 193
  • [45] Numerical solution by quintic B-spline collocation finite element method of generalized Rosenau-Kawahara equation
    Ozer, Sibel
    [J]. MATHEMATICAL SCIENCES, 2022, 16 (03) : 213 - 224
  • [46] Finite element method for a generalized constant delay diffusion equation
    Bu, Weiping
    Guan, Sizhu
    Xu, Xiaohong
    Tang, Yifa
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 134
  • [47] A subdivision-based implementation of the hierarchical b-spline finite element method
    Bornemann, P. B.
    Cirak, F.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2013, 253 : 584 - 598
  • [48] Complex wavenumber Fourier analysis of the B-spline based finite element method
    Kolman, R.
    Plesek, J.
    Okrouhlik, M.
    [J]. WAVE MOTION, 2014, 51 (02) : 348 - 359
  • [49] An exponential B-spline collocation method for the fractional sub-diffusion equation
    Xiaogang Zhu
    Yufeng Nie
    Zhanbin Yuan
    Jungang Wang
    Zongze Yang
    [J]. Advances in Difference Equations, 2017
  • [50] A B-spline finite element method for the thermistor problem with the modified electrical conductivity
    Kutluay, S
    Esen, A
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) : 621 - 632