MMDA: Multi-person marginal distribution awareness for monocular 3D pose estimation

被引:2
|
作者
Liu, Sheng [1 ]
Shuai, Jianghai [1 ]
Li, Yang [1 ]
Du, Sidan [1 ,2 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China
关键词
3D human pose estimation; bottom-up method; marginal distribution awareness; multi-person pose estimation;
D O I
10.1049/ipr2.12783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most existing 3D pose representations cannot completely decouple the overlapping two or more human joints of the same type. In this paper, the authors propose a novel 2.5 D representation of the human pose by projecting human joints in 3D space onto the three orthogonal planes. The authors apply for the first time the permutation module to a multi-person 3D human pose estimation task and use Geometric Constraints Loss (GCL) to guide the learning of the model. The authors overcome the negative effects of the inductive bias of convolutional neural networks (CNNs) by aligning the intermediate feature space with the output feature space. The effectiveness of the authors' approach is validated on the carnegie mellon university (CMU) panoptic dataset and MuPoTS-3D dataset. The authors' proposed representations can effectively decouple the human joints in their selected data from overlapping human joints.
引用
收藏
页码:2182 / 2191
页数:10
相关论文
共 50 条
  • [21] Top-Down System for Multi-Person 3D Absolute Pose Estimation from Monocular Videos
    El Kaid, Amal
    Brazey, Denis
    Barra, Vincent
    Baina, Karim
    [J]. SENSORS, 2022, 22 (11)
  • [22] Efficient Multi-Person Hierarchical 3D Pose Estimation for Autonomous Driving
    Gu, Renshu
    Wang, Gaoang
    Hwang, Jenq-Neng
    [J]. 2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, : 163 - 168
  • [23] VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the Wild
    Zhang, Yifu
    Wang, Chunyu
    Wang, Xinggang
    Liu, Wenyu
    Zeng, Wenjun
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) : 2613 - 2626
  • [24] Multi-Person Absolute 3D Pose and Shape Estimation from Video
    Zhang, Kaifu
    Li, Yihui
    Guan, Yisheng
    Xi, Ning
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2021, PT III, 2021, 13015 : 189 - 200
  • [25] Center point to pose: Multiple views 3D human pose estimation for multi-person
    Liu, Huan
    Wu, Jian
    He, Rui
    [J]. PLOS ONE, 2022, 17 (09):
  • [26] Explicit Occlusion Reasoning for Multi-person 3D Human Pose Estimation
    Liu, Qihao
    Zhang, Yi
    Bai, Song
    Yuille, Alan
    [J]. COMPUTER VISION - ECCV 2022, PT V, 2022, 13665 : 497 - 517
  • [27] Distribution-Aware Single-Stage Models for Multi-Person 3D Pose Estimation
    Wang, Zitian
    Nie, Xuecheng
    Qu, Xiaochao
    Chen, Yunpeng
    Liu, Si
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 13086 - 13095
  • [28] Monocular 3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks
    Cheng, Yu
    Wang, Bo
    Yang, Bo
    Tan, Robby T.
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7645 - 7655
  • [29] RF-based Multi-view Pose Machine for Multi-Person 3D Pose Estimation
    Xie, Chunyang
    Zhang, Dongheng
    Wu, Zhi
    Yu, Cong
    Hu, Yang
    Sun, Qibin
    Chen, Yan
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2669 - 2674
  • [30] Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo
    Lin, Jiahao
    Lee, Gim Hee
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 11881 - 11890