Additive conjucyclic codes over a class of Galois rings

被引:0
|
作者
Islam, Habibul [1 ,2 ]
Bhunia, Dipak Kumar [3 ]
机构
[1] Univ St Gallen, Sch Comp Sci, Torstr 25, CH-9000 St Gallen, Switzerland
[2] Kalinga Inst Ind Technol, Sch Appl Sci, Bhubaneswar 751024, Odisha, India
[3] Univ Autonoma Barcelona, Dept Informat & Commun Engn, Cerdanyola Del Valles 08193, Spain
关键词
Additive code; Galois ring; Cyclic code; Conjucyclic code; CYCLIC CODES; DUAL CODES; CLASSIFICATION; Z(4);
D O I
10.1007/s12190-023-01962-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As a tool towards quantum error correction, additive conjucyclic codes have gained great attention. But, their algebraic structure is completely unknown over finite fields (except F-q2) as well as rings. In this article, we investigate the structure of additive conjucyclic codes over Galois rings GR(2(r), 2), where r >= 2 is an integer. We develop a one-to-one correspondence between the family of additive conjucyclic codes of length n over GR(2(r), 2) and the family of linear cyclic codes of length 2n over Z(2r). This correspondence helps to obtain additive conjucyclic codes over GR(2(r), 2) via known linear cyclic codes over Z(2r). We prove that the trace dual C Tr of an additive conjucyclic code C is also an additive conjucyclic code. Moreover, we derive a necessary and sufficient condition of additive conjucyclic codes to be self-dual. We further propose a technique for constructing linear cyclic codes over Z(2r) contained in additive conjucyclic codes over GR(2(r), 2). Last but not least, we explicitly derive the generator matrices for these codes.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 50 条
  • [31] Weight distribution of double cyclic codes over Galois rings
    Jian Gao
    Xiangrui Meng
    Fang-Wei Fu
    [J]. Designs, Codes and Cryptography, 2022, 90 : 2529 - 2549
  • [32] Hamming metric decoding of alternant codes over Galois rings
    Byrne, E
    Fitzpatrick, P
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) : 683 - 694
  • [33] Repeated Root Cyclic and Negacyclic Codes over Galois Rings
    Lopez-Permouth, Sergio R.
    Szabo, Steve
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 219 - 222
  • [34] A-Codes from Rational Functions over Galois Rings
    Gilberto Bini
    [J]. Designs, Codes and Cryptography, 2006, 39 : 207 - 214
  • [35] Negacyclic codes over Galois rings of characteristic 2a
    Zhu ShiXin
    Kai XiaoShan
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (04) : 869 - 879
  • [36] Affine invariant extended cyclic codes over Galois rings
    Dey, BK
    Rajan, BS
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 160 - 160
  • [37] Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes
    Lopez-Permouth, Sergio R.
    Ozadam, Hakan
    Ozbudak, Ferruh
    Szabo, Steve
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2013, 19 (01) : 16 - 38
  • [38] Construction of MDS self-dual codes over Galois rings
    Kim, Jon-Lark
    Lee, Yoonjin
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2007, 45 (02) : 247 - 258
  • [39] Negacyclic codes of length 2s over Galois rings
    Dinh, HQ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4252 - 4262
  • [40] A Note on Interleaved Reed-Solomon Codes Over Galois Rings
    Armand, Marc A.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 1574 - 1581