Quantum Monte Carlo Method in the Steady State

被引:16
|
作者
Erpenbeck, A. [1 ]
Gull, E. [1 ]
Cohen, G. [2 ,3 ]
机构
[1] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[2] Tel Aviv Univ, Raymond & Beverley Sackler Ctr Computat Mol & Mat, IL-6997801 Tel Aviv, Israel
[3] Tel Aviv Univ, Sch Chem, IL-6997801 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
LIGHT-INDUCED SUPERCONDUCTIVITY; MEAN-FIELD THEORY; ANDERSON MODEL; MOTT TRANSITION; HUBBARD-MODEL; PHASE; TRANSPORT; FERMIONS; LATTICE;
D O I
10.1103/PhysRevLett.130.186301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a numerically exact steady-state inchworm Monte Carlo method for nonequilibrium quantum impurity models. Rather than propagating an initial state to long times, the method is directly formulated in the steady state. This eliminates any need to traverse the transient dynamics and grants access to a much larger range of parameter regimes at vastly reduced computational costs. We benchmark the method on equilibrium Green's functions of quantum dots in the noninteracting limit and in the unitary limit of the Kondo regime. We then consider correlated materials described with dynamical mean field theory and driven away from equilibrium by a bias voltage. We show that the response of a correlated material to a bias voltage differs qualitatively from the splitting of the Kondo resonance observed in bias-driven quantum dots.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Steady-State Convergence Detection Method for Monte Carlo Simulation
    Karchani, Abolfazl
    Ejtehadi, Omid
    Myong, Rho Shin
    [J]. PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2014, 1628 : 313 - 317
  • [2] The quantum Monte Carlo method
    Towler, M. D.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (11): : 2573 - 2598
  • [3] A Probabilistic Automatic Steady State Detection Method for the Direct Simulation Monte Carlo
    Karchani, A.
    Ejtehadi, O.
    Myong, R. S.
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (05) : 1183 - 1209
  • [4] A multistep method for steady-state Monte Carlo simulations of polymerization processes
    Liu, Rui
    Lin, Xiaowen
    Armaou, Antonios
    Chen, Xi
    [J]. AICHE JOURNAL, 2023, 69 (03)
  • [5] A MONTE CARLO METHOD FOR QUANTUM CHEMISTRY
    WHITTINGTON, SG
    BERSOHN, M
    [J]. MOLECULAR PHYSICS, 1969, 17 (06) : 627 - +
  • [6] MONTE CARLO METHOD IN QUANTUM STATISTICS
    FOSDICK, LD
    [J]. SIAM REVIEW, 1968, 10 (03) : 315 - &
  • [7] An iterative coconditional Monte Carlo simulation method for steady-state flow in aquifers
    Yeh, TCJ
    Hanna, S
    [J]. COMPUTATIONAL METHODS IN WATER RESOURCES XI, VOL 1: COMPUTATIONAL METHODS IN SUBSURFACE FLOW AND TRANSPORT PROBLEMS, 1996, : 679 - 687
  • [8] Steady-state properties of multi-orbital systems using quantum Monte Carlo
    Erpenbeck, A.
    Blommel, T.
    Zhang, L.
    Lin, W. -t.
    Cohen, G.
    Gull, E.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (09):
  • [9] A quantum Monte Carlo method for quantum Ising model
    Zhang, Q
    Gu, YW
    Wei, GZ
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON MAGNETIC INDUSTRY (ISMI'04) & FIRST INTERNATIONAL SYMPOSIUM ON PHYSICS AND IT INDUSTRY (ISITI'04), 2005, : 40 - 42
  • [10] Quantum Monte Carlo method for the ground state of many-boson systems
    Purwanto, W
    Zhang, SW
    [J]. PHYSICAL REVIEW E, 2004, 70 (05):