A 600 m2 array of 6.5 m telescopes at the lunar pole

被引:0
|
作者
Angel, Roger [1 ,2 ]
机构
[1] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Opt Sci, Tucson, AZ 85721 USA
关键词
lunar pole; telescope array; exoplanet biosignatures; early universe;
D O I
10.1098/rsta.2023.0076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The proposed lunar telescope for optical and infrared astronomy aims at very large aperture, 600 m(2), at a fundable cost. It comprises an array of 18 separate telescopes, each of 6.5 m aperture. The 200 m diameter array will be located within 1/2(degrees) (15 km) of a lunar pole on approximately level ground, with a perimeter screen deployed to provide shade and cooling to cryogenic temperature. The 500 m diameter screen will allow unobscured access down to 8(degrees) elevation. All 18 telescopes will reflect light into a central beam combiner to form a single image covering wavelengths from 0.4 mu m to 10 mu m. The initial instrument complement will include high-resolution and multi-object spectrographs to exploit the single combined field of view of two arcminute diameter, with the diffraction limited resolution of 6.5 m aperture. Scientific applications include the search for molecular biosignatures in transiting exoplanets, and the study of galaxy evolution using red-shifted spectra to beyond z = 10. The array cost, including delivery to the Moon by SpaceX Starship for installation using lunar base infrastructure, is around $10 billion, similar to that of the 25 m(2) JWST. To test the concept, first a single prototype 6.5 m unit would be operated at the lunar south pole. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] 90nm Toggle MRAM array with 0.29μm2 cells
    Durlam, M
    Andre, T
    Brown, P
    Calder, J
    Chan, J
    Cuppens, R
    Dave, RW
    Ditewig, T
    DeHerrera, M
    Engel, BN
    Feil, B
    Frey, C
    Galpin, D
    Garni, B
    Grynkewich, G
    Janesky, J
    Kerszykowski, G
    Lien, M
    Martin, J
    Nahas, J
    Nagel, K
    Smith, K
    Subramanian, C
    Sun, JJ
    Tamim, J
    Williams, R
    Wise, L
    Zoll, S
    List, F
    Fournel, R
    Martino, B
    Tehrani, S
    [J]. 2005 Symposium on VLSI Technology, Digest of Technical Papers, 2005, : 186 - 187
  • [32] REACTIONS OF M2(OR)6 COMPOUNDS (M M, M = MO, W) WITH THIOKETONES
    BUDZICHOWSKI, T
    CHISHOLM, MH
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 155 - INOR
  • [33] The Camera Server of the ASTRI SST-2M Telescopes Proposed for the Cherenkov Telescope Array
    Conforti, V.
    Trifoglio, M.
    Gianotti, F.
    Malaguti, G.
    Bulgarelli, A.
    Fioretti, V.
    Zoli, A.
    Catalano, O.
    Capalbi, M.
    Sangiorgi, P.
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXV, 2017, 512 : 635 - 638
  • [34] τ- → ντM1M2, with M1, M2 pseudoscalar or vector mesons
    Dai, L. R.
    Pavao, R.
    Sakai, S.
    Oset, E.
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (02):
  • [35] INDIVIDUAL OVERFLOW PROCESSES FROM M1,M2/M1,M2/S/S LOSS SYSTEM
    MACHIHARA, F
    USUI, Y
    TAKAHASHI, Y
    [J]. REVIEW OF THE ELECTRICAL COMMUNICATIONS LABORATORIES, 1986, 34 (05): : 561 - 567
  • [36] 10 M2 of Love
    NINA VICKERY
    [J]. China Today, 2015, (06) : 55 - 57
  • [37] M2 bridge demolition
    Anon
    [J]. Highways, 2002, 71 (05):
  • [38] Homogeneous M2 duals
    Figueroa-O'Farrill, Jose
    Ungureanu, Mara
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (01): : 1 - 54
  • [39] M2 macrophages in metabolism
    Fujisaka S.
    Usui I.
    Nawaz A.
    Takikawa A.
    Kado T.
    Igarashi Y.
    Tobe K.
    [J]. Diabetology International, 2016, 7 (4) : 342 - 351
  • [40] M2的背后
    智强
    [J]. 中国新时代, 2013, (03) : 44 - 45