Anatomical Tissue Engineering of the Anterior Cruciate Ligament Entheses

被引:11
|
作者
Goegele, Clemens [1 ]
Hahn, Judith [2 ]
Schulze-Tanzil, Gundula [1 ]
机构
[1] Paracelsus Med Univ, Inst Anat & Cell Biol, Prof Ernst Nathan Str 1, D-90419 Nurnberg, Germany
[2] Leibniz Inst Polymerforsch Dresden eV IPF, Workgrp Bioengn, Inst Polymers Mat, Dept Mat Engn, Hohe Str 6, D-01069 Dresden, Germany
关键词
ACL; enthesis; ligament; synovioentheseal complex knee; tissue engineering; triphasic and graded scaffold; fibrocartilage; bone-ligament interface; zonality; tidemark; FINITE-ELEMENT-ANALYSIS; TENDON-BONE INTERFACE; GROWTH-FACTOR; REGENERATION; SCAFFOLDS; FIBROCARTILAGE; INSERTION; CELLS; GRAFT; BIOMATERIALS;
D O I
10.3390/ijms24119745
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The firm integration of anterior cruciate ligament (ACL) grafts into bones remains the most demanding challenge in ACL reconstruction, since graft loosening means graft failure. For a functional-tissue-engineered ACL substitute to be realized in future, robust bone attachment sites (entheses) have to be re-established. The latter comprise four tissue compartments (ligament, non-calcified and calcified fibrocartilage, separated by the tidemark, bone) forming a histological and biomechanical gradient at the attachment interface between the ACL and bone. The ACL enthesis is surrounded by the synovium and exposed to the intra-articular micromilieu. This review will picture and explain the peculiarities of these synovioentheseal complexes at the femoral and tibial attachment sites based on published data. Using this, emerging tissue engineering (TE) strategies addressing them will be discussed. Several material composites (e.g., polycaprolactone and silk fibroin) and manufacturing techniques (e.g., three-dimensional-/bio-printing, electrospinning, braiding and embroidering) have been applied to create zonal cell carriers (bi- or triphasic scaffolds) mimicking the ACL enthesis tissue gradients with appropriate topological parameters for zones. Functionalized or bioactive materials (e.g., collagen, tricalcium phosphate, hydroxyapatite and bioactive glass (BG)) or growth factors (e.g., bone morphogenetic proteins [BMP]-2) have been integrated to achieve the zone-dependent differentiation of precursor cells. However, the ACL entheses comprise individual (loading history) asymmetric and polar histoarchitectures. They result from the unique biomechanical microenvironment of overlapping tensile, compressive and shear forces involved in enthesis formation, maturation and maintenance. This review should provide a road map of key parameters to be considered in future in ACL interface TE approaches.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Prediction of the morphological and mechanical properties of a novel scaffold for anterior cruciate ligament tissue engineering
    Laurent, C.
    Durville, D.
    Ganghoffer, J. -F.
    Rahouadj, R.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2011, 14 : 45 - 46
  • [32] Decoding the mechanical characteristics of the human anterior cruciate ligament entheses through graduated mineralization interfaces
    Fang, Jinghua
    Wang, Xiaozhao
    Lai, Huinan
    Li, Wenyue
    Yao, Xudong
    Pan, Zongyou
    Mao, Renwei
    Yan, Yiyang
    Xie, Chang
    Lin, Junxin
    Sun, Wei
    Li, Rui
    Wang, Jiajie
    Dai, Jiacheng
    Xu, Kaiwang
    Yu, Xinning
    Xu, Tengjing
    Duan, Wangping
    Qian, Jin
    Ouyang, Hongwei
    Dai, Xuesong
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [33] Möglichkeiten und Grenzen des „tissue engineering“ des vorderen KreuzbandesPossibilities and limits in tissue engineering of the anterior cruciate ligament
    A. Ignatius
    L. Dürselen
    Der Orthopäde, 2009, 38 : 1080 - 1086
  • [34] Tissue engineering of the anterior cruciate ligament using degradable phosphate-based glass fibres
    Rathbone, S.
    Healy, D.
    Cartmell, S.
    TISSUE ENGINEERING, 2007, 13 (07): : 1770 - 1770
  • [35] Anterior cruciate ligament reconstruction using an anterior cruciate ligament stump
    Chen, Tie-Zhu
    Wang, Yi-Sheng
    Li, Xiao-Sheng
    VIDEOSURGERY AND OTHER MINIINVASIVE TECHNIQUES, 2019, 14 (03) : 461 - 467
  • [36] Anterior cruciate ligament reconstruction model based on anatomical position locating
    Rao, Yunbo
    Ding, XianShu
    Li, Jia
    Gou, JianPing
    Wang, Qifei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (07) : 9943 - 9958
  • [37] Anterior cruciate ligament: an anatomical exploration in humans and in a selection of animal species
    Tantisricharoenkul, Gof
    Linde-Rosen, Monica
    Araujo, Paulo
    Zhou, Jingbin
    Smolinski, Patrick
    Fu, Freddie H.
    KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2014, 22 (05) : 961 - 971
  • [38] <hr>Hereditary Anatomical Risk Factors for Anterior Cruciate Ligament Injuries
    Hagino, Tetsuo
    Ochiai, Satoshi
    Furuya, Naoto
    Hagino, Tetsuhiro
    Wako, Masanori
    Taniguchi, Naofumi
    Haro, Hirotaka
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (02)
  • [39] Anatomical Single-Bundle Transtibial Anterior Cruciate Ligament Reconstruction
    Zhao, Jinzhong
    ARTHROSCOPY TECHNIQUES, 2020, 9 (09): : E1275 - E1282
  • [40] Anterior cruciate ligament: an anatomical exploration in humans and in a selection of animal species
    Gof Tantisricharoenkul
    Monica Linde-Rosen
    Paulo Araujo
    Jingbin Zhou
    Patrick Smolinski
    Freddie H. Fu
    Knee Surgery, Sports Traumatology, Arthroscopy, 2014, 22 : 961 - 971