Unsupervised machine learning methods and emerging applications in healthcare

被引:51
|
作者
Eckhardt, Christina M. [1 ]
Madjarova, Sophia J. [2 ,3 ]
Williams, Riley J. [2 ,3 ]
Ollivier, Mattheu [4 ]
Karlsson, Jon [5 ]
Pareek, Ayoosh [2 ,3 ]
Nwachukwu, Benedict U. [2 ,3 ]
机构
[1] Columbia Univ, Dept Med, Coll Phys & Surg, Div Pulm Allergy & Crit Care Med,Irving Med Ctr, New York, NY USA
[2] Hosp Special Surg, Dept Orthoped Surg & Sports Med, 535 East 70th St, New York, NY 10021 USA
[3] Hosp Special Surg, Dept Orthoped Surg & Sports Med, Shoulder Serv, 535 East 70th St, New York, NY 10021 USA
[4] Aix Marseille Univ, Inst Movement & Appareil Locomoteur, Marseille, France
[5] Gothenburg Univ, Sahlgrenska Univ Hosp, Sahlgrenska Acad, Dept Orthopaed, Gothenburg, Sweden
关键词
Machine learning; Editorial; Artificial intelligence; Computational models; Analytics; ALGORITHMS;
D O I
10.1007/s00167-022-07233-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Unsupervised machine learning methods are important analytical tools that can facilitate the analysis and interpretation of high-dimensional data. Unsupervised machine learning methods identify latent patterns and hidden structures in high-dimensional data and can help simplify complex datasets. This article provides an overview of key unsupervised machine learning techniques including K-means clustering, hierarchical clustering, principal component analysis, and factor analysis. With a deeper understanding of these analytical tools, unsupervised machine learning methods can be incorporated into health sciences research to identify novel risk factors, improve prevention strategies, and facilitate delivery of personalized therapies and targeted patient care.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [41] An unsupervised discriminative extreme learning machine and its applications to data clustering
    Peng, Yong
    Zheng, Wei-Long
    Lu, Bao-Liang
    NEUROCOMPUTING, 2016, 174 : 250 - 264
  • [42] A Review of Unsupervised Machine Learning Frameworks for Anomaly Detection in Industrial Applications
    Usmani, Usman Ahmad
    Happonen, Ari
    Watada, Junzo
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 158 - 189
  • [43] Applications of Unsupervised Machine Learning in Autism Spectrum Disorder Research: a Review
    Parlett-Pelleriti, Chelsea M.
    Stevens, Elizabeth
    Dixon, Dennis
    Linstead, Erik J.
    REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2023, 10 (03) : 406 - 421
  • [44] Applications of Unsupervised Machine Learning in Autism Spectrum Disorder Research: a Review
    Chelsea M. Parlett-Pelleriti
    Elizabeth Stevens
    Dennis Dixon
    Erik J. Linstead
    Review Journal of Autism and Developmental Disorders, 2023, 10 : 406 - 421
  • [45] Machine learning and deep learning methods for wireless network applications
    Abel C. H. Chen
    Wen-Kang Jia
    Feng-Jang Hwang
    Genggeng Liu
    Fangying Song
    Lianrong Pu
    EURASIP Journal on Wireless Communications and Networking, 2022
  • [46] Machine learning and deep learning methods for wireless network applications
    Chen, Abel C. H.
    Jia, Wen-Kang
    Hwang, Feng-Jang
    Liu, Genggeng
    Song, Fangying
    Pu, Lianrong
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2022, 2022 (01)
  • [47] Methodological progress note: Machine learning methods in healthcare research
    Rogerson, Colin
    Hall, Matt
    JOURNAL OF HOSPITAL MEDICINE, 2023, 18 (05) : 431 - 434
  • [48] What Counts as "Clinical Data" in Machine Learning Healthcare Applications?
    Skorburg, Joshua August
    AMERICAN JOURNAL OF BIOETHICS, 2020, 20 (11): : 27 - 30
  • [49] Clinician checklist for assessing suitability of machine learning applications in healthcare
    Scott, Ian
    Carter, Stacey
    Coiera, Enrico
    BMJ HEALTH & CARE INFORMATICS, 2021, 28 (01)
  • [50] The Power of Informatics and Machine Learning Applications to Personalized Healthcare Delivery
    Ohno-Machado, Lucila
    ANNALS OF NEUROLOGY, 2024, 96 : S302 - S302