Unsupervised machine learning methods and emerging applications in healthcare

被引:51
|
作者
Eckhardt, Christina M. [1 ]
Madjarova, Sophia J. [2 ,3 ]
Williams, Riley J. [2 ,3 ]
Ollivier, Mattheu [4 ]
Karlsson, Jon [5 ]
Pareek, Ayoosh [2 ,3 ]
Nwachukwu, Benedict U. [2 ,3 ]
机构
[1] Columbia Univ, Dept Med, Coll Phys & Surg, Div Pulm Allergy & Crit Care Med,Irving Med Ctr, New York, NY USA
[2] Hosp Special Surg, Dept Orthoped Surg & Sports Med, 535 East 70th St, New York, NY 10021 USA
[3] Hosp Special Surg, Dept Orthoped Surg & Sports Med, Shoulder Serv, 535 East 70th St, New York, NY 10021 USA
[4] Aix Marseille Univ, Inst Movement & Appareil Locomoteur, Marseille, France
[5] Gothenburg Univ, Sahlgrenska Univ Hosp, Sahlgrenska Acad, Dept Orthopaed, Gothenburg, Sweden
关键词
Machine learning; Editorial; Artificial intelligence; Computational models; Analytics; ALGORITHMS;
D O I
10.1007/s00167-022-07233-7
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Unsupervised machine learning methods are important analytical tools that can facilitate the analysis and interpretation of high-dimensional data. Unsupervised machine learning methods identify latent patterns and hidden structures in high-dimensional data and can help simplify complex datasets. This article provides an overview of key unsupervised machine learning techniques including K-means clustering, hierarchical clustering, principal component analysis, and factor analysis. With a deeper understanding of these analytical tools, unsupervised machine learning methods can be incorporated into health sciences research to identify novel risk factors, improve prevention strategies, and facilitate delivery of personalized therapies and targeted patient care.
引用
收藏
页码:376 / 381
页数:6
相关论文
共 50 条
  • [1] Unsupervised machine learning methods and emerging applications in healthcare
    Christina M. Eckhardt
    Sophia J. Madjarova
    Riley J. Williams
    Mattheu Ollivier
    Jón Karlsson
    Ayoosh Pareek
    Benedict U. Nwachukwu
    Knee Surgery, Sports Traumatology, Arthroscopy, 2023, 31 : 376 - 381
  • [2] Emerging applications of machine learning in genomic medicine and healthcare
    Chafai, Narjice
    Bonizzi, Luigi
    Botti, Sara
    Badaoui, Bouabid
    CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES, 2023, : 140 - 163
  • [3] Nonparametric segmentation methods: Applications of unsupervised machine learning and revealed preference
    Blumberg, Joey
    Thompson, Gary
    AMERICAN JOURNAL OF AGRICULTURAL ECONOMICS, 2022, 104 (03) : 976 - 998
  • [4] Applications of machine learning in healthcare
    Aracena, Claudio
    Villena, Fabian
    Arias, Felipe
    Dunstan, Jocelyn
    REVISTA MEDICA CLINICA LAS CONDES, 2022, 33 (06): : 568 - 575
  • [5] Quantum Machine Learning Revolution in Healthcare: A Systematic Review of Emerging Perspectives and Applications
    Ullah, Ubaid
    Garcia-Zapirain, Begonya
    IEEE ACCESS, 2024, 12 : 11423 - 11450
  • [6] MACHINE LEARNING METHODS IN HEALTHCARE: AN OVERVIEW
    Allareddy, Veerajalandhar
    Karhade, Deepti Shroff
    Chegondi, Madhuradhar
    Badheka, Aditya
    Allareddy, Veerasathpurush
    CRITICAL CARE MEDICINE, 2020, 48
  • [7] Machine Learning Theory and Applications for Healthcare
    Khare, Ashish
    Jeon, Moongu
    Sethi, Ishwar K.
    Xu, Benlian
    JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
  • [8] Identifying structural changes with unsupervised machine learning methods
    Walker, Nicholas
    Tam, Ka-Ming
    Novak, Brian
    Jarrell, M.
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [9] Unsupervised Machine Learning Methods for City Vitality Index
    Dessureault, Jean-Sebastien
    Simard, Jonathan
    Massicotte, Daniel
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 230 - 246
  • [10] Federated Learning in Healthcare with Unsupervised and Semi-Supervised Methods
    Panos-Basterra, Juan
    Dolores Ruiz, M.
    Martin-Bautista, Maria J.
    FLEXIBLE QUERY ANSWERING SYSTEMS, FQAS 2023, 2023, 14113 : 182 - 193