Adaptive importance sampling for multilevel Monte Carlo Euler method

被引:2
|
作者
Ben Alaya, Mohamed [1 ]
Hajji, Kaouther [2 ]
Kebaier, Ahmed [3 ]
机构
[1] Univ Rouen Normandie, St Etienne Du Rouvray, France
[2] Univ Sorbonne Paris Nord, Villetaneuse, France
[3] Univ Evry, Univ Paris Saclay, Lab Math & Modelisat Evry, CNRS, Evry, France
关键词
Multilevel Monte Carlo; stochastic algorithm; Robbins-Monro; variance reduction; Lindeberg-Feller central limit theorem; Euler scheme; finance; SDES;
D O I
10.1080/17442508.2022.2084338
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the study of an original combination of the Multilevel Monte Carlo method introduced by Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56(3) (2008), pp. 607-617.] and the popular importance sampling technique. To compute the optimal choice of the parameter involved in the importance sampling method, we rely on Robbins-Monro type stochastic algorithms. On the one hand, we extend our previous work [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947-1983.] to the Multilevel Monte Carlo setting. On the other hand, we improve [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947-1983.] by providing a new adaptive algorithm avoiding the discretization of any additional process. Furthermore, from a technical point of view, the use of the same stochastic algorithms as in [M. Ben Alaya, K. Hajji and A. Kebaier, Importance sampling and statistical Romberg method, Bernoulli 21(4) (2015), pp. 1947-1983.] appears to be problematic. To overcome this issue, we employ an alternative version of stochastic algorithms with projection (see, e.g. Laruelle, Lehalle and Pages [Optimal posting price of limit orders: learning by trading, Math. Financ. Econ. 7(3) (2013), pp. 359-403.]). In this setting, we show innovative limit theorems for a doubly indexed stochastic algorithm which appear to be crucial to study the asymptotic behaviour of the new adaptive Multilevel Monte Carlo estimator. Finally, we illustrate the efficiency of our method through applications from quantitative finance.
引用
收藏
页码:303 / 327
页数:25
相关论文
共 50 条
  • [41] Monte Carlo importance sampling for the MCNP™ general source
    Lichtenstein, H
    PROCEEDINGS OF THE 1996 TOPICAL MEETING RADIATION PROTECTION & SHIELDING, VOLS 1 AND 2, 1996, 1-2 : 427 - 431
  • [42] Estimation of distributions via multilevel Monte Carlo with stratified sampling
    Taverniers, Soren
    Tartakovsky, Daniel M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 419
  • [43] Approximate importance sampling Monte Carlo for data assimilation
    Berliner, L. Mark
    Wikle, Christopher K.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 37 - 49
  • [44] Weighted importance sampling techniques for Monte Carlo radiosity
    Bekaert, P
    Sbert, M
    Willems, YD
    RENDERING TECHNIQUES 2000, 2000, : 35 - +
  • [45] Importance sampling in rigid body diffusion Monte Carlo
    Viel, A
    Patel, MV
    Niyaz, P
    Whaley, KB
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 145 (01) : 24 - 47
  • [46] Application of crude Monte Carlo and adaptive importance sampling in reliability assessment of URM shear walls
    Salehi, H.
    Montazerolghaem, M.
    Jaeger, W.
    BRICK AND BLOCK MASONRY: TRENDS, INNOVATIONS AND CHALLENGES, 2016, : 331 - 337
  • [47] Speeding up Monte Carlo simulations for the adaptive sum of powered score test with importance sampling
    Deng, Yangqing
    He, Yinqiu
    Xu, Gongjun
    Pan, Wei
    BIOMETRICS, 2022, 78 (01) : 261 - 273
  • [48] An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data
    Eigel, Martin
    Merdon, Christian
    Neumann, Johannes
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1219 - 1245
  • [49] On the convergence rate of Quasi Monte Carlo method with importance sampling for unbounded functions in RKHS
    Wang, Hejin
    Wang, Xiaoqun
    Applied Mathematics Letters, 2025, 160
  • [50] Rapid Covariance-Based Sampling of Linear SPDE Approximations in the Multilevel Monte Carlo Method
    Petersson, Andreas
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2018, 2020, 324 : 423 - 443