Temporal Semi-discretizations of a Backward Semilinear Stochastic Evolution Equation

被引:0
|
作者
Li, Binjie [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2023年 / 88卷 / 02期
基金
中国国家自然科学基金;
关键词
Backward semilinear stochastic evolution equation; Brownian motion; Discretization; Stochastic linear quadratic control; PARTIAL-DIFFERENTIAL-EQUATIONS; MAXIMUM PRINCIPLE; CONVERGENCE RATES; ADAPTED SOLUTION; SCHEME; APPROXIMATION; SPDES;
D O I
10.1007/s00245-023-10014-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the convergence of three temporal semi-discretizations for a backward semilinear stochastic evolution equation. For general terminal value and general coefficient with Lipschitz continuity, the convergence of the first two temporal semi-discretizations is established, and an explicit convergence rate is derived for the third temporal semi-discretization. The third temporal semi-discretization is applied to a general stochastic linear quadratic control problem, and the convergence of a temporally semi-discrete approximation to the optimal control is established.
引用
收藏
页数:30
相关论文
共 50 条